精英家教网 > 高中数学 > 题目详情
判断圆x2+y2-2x-1=0与圆x2+y2-8x-6y+7=0的位置关系(  )
分析:将两圆化成标准方程,得到它们的圆心和半径,用两点距离公式求出圆心距,最后用圆心距离与两圆的半径和与差进行比较,即可得到两圆的位置关系;
解答:解:将两圆化为标准方程,得C1:(x-1)2+y2=2,C2:(x-4)2+(y-3)2=18
∴圆C1的圆心为(1,0),半径为r1=
2
;圆C2的圆心为(4,3),半径为r2=3
2

又∵|C1C2|=
(4-1)2+(3-0)2
=3
2
,r1+r2=
2
+3
3
=4
2
,r2-r1=3
2
-
2
=2
2

可得 r2-r1<|C1C2|<r1+r2
∴两圆相交.
故选:D.
点评:本题给出两个定圆着重考查了圆的标准方程与一般方程的互化,圆与圆的位的位置关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设点P(m,n)在圆x2+y2=2上,l是过点P的圆的切线,切线l与函数y=x2+x+k(k∈R)的图象交于A,B两点,点O是坐标原点.
(1)当k=-2,m=-1,n=-1时,判断△OAB的形状;
(2)△OAB是以AB为底的等腰三角形;
①试求出P点纵坐标n满足的等量关系;
②若将①中的等量关系右边化为零,左边关于n的代数式可表为(n+1)2(ax2+bx+c)的形式,且满足条件的等腰三角形有3个,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=1与x轴正半轴的交点为F,AB为该圆的一条弦,直线AB的方程为x=m.记以AB为直径的圆为⊙C,记以点F为右焦点、短半轴长为b(b>0,b为常数)的椭圆为D.
(1)求⊙C和椭圆D的标准方程;
(2)当b=1时,求证:椭圆D上任意一点都不在⊙C的内部;
(3)已知点M是椭圆D的长轴上异于顶点的任意一点,过点M且与x轴不垂直的直线交椭圆D于P、Q两点(点P在x轴上方),点P关于x轴的对称点为N,设直线QN交x轴于点L,试判断
OM
OL
是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线3x+4y+2=0与圆x2+y2-2x=0的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

A:如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于点D,BC=4cm,
(1)试判断OD与AC的关系;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
B:(选修4-4)已知直线l经过点P(1,1),倾斜角α=
4

(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省扬州大学附中高考数学模拟试卷(解析版) 题型:解答题

设点P(m,n)在圆x2+y2=2上,l是过点P的圆的切线,切线l与函数y=x2+x+k(k∈R)的图象交于A,B两点,点O是坐标原点.
(1)当k=-2,m=-1,n=-1时,判断△OAB的形状;
(2)△OAB是以AB为底的等腰三角形;
①试求出P点纵坐标n满足的等量关系;
②若将①中的等量关系右边化为零,左边关于n的代数式可表为(n+1)2(ax2+bx+c)的形式,且满足条件的等腰三角形有3个,求k的取值范围.

查看答案和解析>>

同步练习册答案