分析 (1)利用等比数列与等差数列的通项公式即可得出.
(2)利用“裂项求和”方法与数列的单调性即可得出.
解答 解:(1)∵a3是a1,a9的等比中项.
∴$({a}_{1}+2d)^{2}$=a1(a1+8d),即(1+2d)2=1+8d,d≠0,解得d=1.
∴通项公式an=1+(n-1)=n.
(2)由通项公式知:$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$≥$\frac{1}{2}$,
∵对任意的n∈N*,不等式$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…$\frac{1}{{a}_{n}{a}_{n+1}}$+≥λ恒成立,
∴$λ≤\frac{1}{2}$.
点评 本题考查了等比数列与等差数列的通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x-2y-2=0 | B. | x-2y+2=0 | C. | 2x+y-4=0 | D. | x+2y-2=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 使用年限x | 2 | 3 | 4 | 5 | 6 |
| 维修与保养的总费用y | 2 | 3 | 5 | 6 | 9 |
| A. | 15200 | B. | 12500 | C. | 15300 | D. | 13500 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com