(本小题满分13分)
已知函数![]()
(1)当
时,求曲线
处的切线方程;
(2)设
的两个极值点,
的一个零点,且
证明:存在实数
按照某种顺序排列后构成等差数列,并求
.
(1)y=x - 2
(2)![]()
【解析】(本小题满分13分)
(1)解:当a=1,b=2时,
因为f’(x)=(x-1)(3x-5) …………..2分
故
…………….3分
f(2)=0, …………….4分
所以f(x)在点(2,0)处的切线方程为y=x - 2 ………..5分
(2)证明:因为f′(x)=3(x-a)(x-
),…………….7分
由于a<b. 故a<
.
所以f(x)的两个极值点为x=a,x=
………..9分
不妨设x1=a,x2=
,
因为x3≠x1,x3≠x2,且x3是f(x)的零点,
故x3=b. …………….10分
又因为
-a=2(b-
),
x4=
(a+
)=
,
所以a,
,
,b依次成等差数列,
所以存在实数x4满足题意,且x4=
.…………………….13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com