精英家教网 > 高中数学 > 题目详情
函数y=log2(x2+ax+2)的值域为R,则实数a的取值范围是
(2
2
,+∞)∪(-∞,-2
2
(2
2
,+∞)∪(-∞,-2
2
分析:可以令f(x)=x2+ax+2,由题意函数的值域为R,则可得f(x)可以取所有的正数可得,△≥0,解不等式即可求解;
解答:解:f(x)=x2+ax+2,
∵函数y=log2(x2+ax+2)的值域为R,
∴f(x)可以取所有的正数可得,△≥0
∴△≥0,可得a2-4×2≥0,
∴a≥2
2
或a≤-2
2

故答案为:(2
2
,+∞)∪(-∞,-2
2
);
点评:本题主要考查了由二次函数与对数函数复合的复合函数,解题的关键是要熟悉对数函数的性质,解题时容易误认为△<0,要注意区别与函数的定义域为R的限制条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=log2(1+x)+
2-x
的定义域为(  )
A、(0,2)
B、(-1,2]
C、(-1,2)
D、[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①函数y=-
2
x
在其定义域上是增函数;        
②函数y=
x2(x-1)
x-1
是偶函数;
③函数y=log2(x-1)的图象可由y=log2(x+1)的图象向右平移2个单位得到;
④若2a=3b<1,则a<b<0;
则上述正确命题的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=log2(x+2)的图象,只需把函数y=log2(x-1)的图象向(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2(x+1)+1(x>0)的反函数是
y=2x-1-1(x>1)
y=2x-1-1(x>1)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2(x+1)的图象与y=f(x)的图象关于直线x=1对称,则f(x)的表达式是
y=log2(3-x)(x<3)
y=log2(3-x)(x<3)

查看答案和解析>>

同步练习册答案