精英家教网 > 高中数学 > 题目详情
台风中心从A地以每小时20公里的速度向东北方向移动,离台风中心30公里内地区为危险区,城市B在A的正东40公里处,则B城市处于危险区的时间为
 
小时.
考点:三角形中的几何计算
专题:计算题
分析:先以A为坐标原点,建立平面直角坐标系,进而可知B点坐标和台风中心移动的轨迹,求得点B到射线的距离,进而求得答案.
解答: 解:如图,以A为坐标原点,建立平面直角坐标系,则B(40,0),
台风中心移动的轨迹为射线y=x(x≥0),
而点B到射线y=x的距离d=
40
2
=20
2
<30,
故l=2
302-(20
2
)
2
=20,
故B城市处于危险区内的时间为1小时,
故答案为:1.
点评:本题主要考查了解三角形的实际应用.通过建立直角坐标系把三角形问题转换成解析几何的问题,方便了问题的解决,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位设计一个展览沙盘,现欲在沙盘平面内,铺设一个对角线在L上的四边形电气线路,如图所示.为充分利用现有材料,边BC,CD用一根5米长的材料弯折而成,边BA,AD用一根9米长的材料弯折而成,使A+C=180°,且AB=BC.设AB=x米,cos A=f(x).
(1)求f(x)的解析式,并指出x的取值范围;
(2)求y=
sinA
AB
的最大值,并指出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,平行于AB,CD的平面β截四面体所得截面为EFGH.
(1)若AB=CD=a,求证:截面EFGH为平行四边形且周长为定值.
(2)如果AB与CD所成角为θ,AB=a,CD=b是定值,当E在AC何处时?截面EFGH的面积最大,最大值是多少?
(3)若AB到平面的距离为d1,CD到平面的距离为d2,且
d1
d2
=k,求立体图形ABEFGH与四面体ABCD的体积之比(用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

中国正在成为汽车生产大国,汽车保有量大增,交通拥堵日趋严重.某市有关部门进行了调研,相关数据显示,从上午7点到中午12点,车辆通过该市某一路段的用时y(分钟)与车辆进入该路段的时刻t之间关系可近似地用如下函数给出:y=
18sin(
π
3
t-
13
6
π),7≤t≤9
4t-27,9≤t<10
-3t2+66t-347,10<t≤12
,求从上午7点到中午12点,车辆通过该路段用时最多的时刻.

查看答案和解析>>

科目:高中数学 来源: 题型:

将直线2x-y+λ=0沿x轴向右平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ的值为(  )
A、-3或7B、-2或8
C、0或10D、1或11

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是求函数y=f(x)值的一个程序.请写出这个函数y=f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)log3
27
+lg25+lg4+7 log72+(-9.8)0+0.25-2
(2)2(lg
2
2+lg
2
•lg5+
(lg
2
)2-lg2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积为(  )
A、
3
B、
3
C、
4
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)与F(x)满足F(x)=f(x)+2,且f(x)在R上是奇函数.
(Ⅰ)若F(-1)=8,求F(1);
(Ⅱ)若F(x)在(0,+∞)上的最大值为5,那么在(-∞,0)上F(0)是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案