精英家教网 > 高中数学 > 题目详情
1.若x∈R,则“x=-1”是“x3=-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

分析 解方程“x3=-1”,求出x的值,结合充分必要条件的定义判断即可.

解答 解:因为x3=-1,解得x=-1,
由集合的相等关系,
我们不难得到“x=-1”是“x3=-1”的充要条件,
故选:C.

点评 判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.f'(x)是函数f(x)的导函数,f''(x)是函数f'(x)的导函数.对于三次函数y=f(x),若方程f''(x0)=0,则点($\begin{array}{l}{{x_0},f({x_0})}\end{array}$)即为函数y=f(x)图象的对称中心.设函数f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+3x-\frac{5}{12}$,则f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=(  )
A.1008B.2014C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示,如果执行如图所示的程序框图,输入n=6,m=4,那么输出的p=2520.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立;在四边形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成立;在五边形ABCDE中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.
(1)根据以上结论猜想在n边形A1A2A3…An中,有怎样的不等式成立.(不要求证明)
(2)数列{an},满足a1=1,an+1-an≤2,Sn为数列{an}的前n项和,试用(1)猜想的结论,证明不等式Sn≤(A1+A2+…An)($\frac{1}{{A}_{1}}$+$\frac{1}{{A}_{2}}$+…+$\frac{1}{{A}_{n}}$)(n≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某学校有男老师48人,女老师36人.若用分层抽样的方法从该校的老师中抽取一个容量为21的样本,则抽取男老师人数为:12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设α、β∈(0,π),sin(α+β)=$\frac{5}{13}$,tan$\frac{α}{2}$=$\frac{1}{2}$,则tanα=$\frac{4}{3}$,tanβ=-$\frac{63}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将6名志愿者分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组都由3名志愿者组成,不同的安排方案有(  )
A.20种B.12种C.120种D.40种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=an2+bn.
(1)若a≠0,请用反证法证明:数列{Sn}不可能是等差数列;
(2)试判断数列{an}是否为等比数列?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,△ABC内接于⊙O,过BC中点D作平行于AC的直线l,l交AB于E,交⊙O于G、F,交⊙O在A点处的切线于P,若PE=3,ED=2,EF=3,则PA的长为(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.$\sqrt{7}$D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案