精英家教网 > 高中数学 > 题目详情
已知椭圆的两焦点为F1(-2,0),F2(2,0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|的等差中项.
(1)求此椭圆方程;
(2)若点满足∠F1PF2=120°,求△PF1F2的面积.
分析:(1)利用等差数列的定义可得2|F1F2|=|PF1|+|PF2|=8,又c=2,即可得出2a=8,再利用b2=a2-c2即可.
(2)利用余弦定理及椭圆定义即可得出|PF1|•|PF2|=48,再利用三角形的面积计算公式即可得出.
解答:解:(1)由已知得,c=2,2|F1F2|=|PF1|+|PF2|=8⇒2a=8,∴a=4.
∴b2=a2-c2=16-4=12,
所求椭圆的方程为
x2
16
+
y2
12
=1

(2)由余弦定理得:|PF1|2+|PF2|2-16=2|PF1|•|PF2|•cos120°
(|PF1|+|PF2|)2-2|PF1|•|PF2|-16=-|PF1|•|PF2|
解得|PF1|•|PF2|=48,
S△ABC=
1
2
|PF1|•|PF2|sin120°=12
3
点评:熟练掌握椭圆的定义及其性质、余弦定理及三角形的面积计算公式等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2007-2008学年广东省惠州一中高三(上)数学寒假作业5(理科)(解析版) 题型:选择题

已知椭圆的左焦点为F,A(-a,0),B(0,b)为椭圆的两个顶点,若F到AB的距离等于,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏银川一中高三(下)第六次月考数学试卷(文科)(解析版) 题型:解答题

已知椭圆的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点().

查看答案和解析>>

科目:高中数学 来源:2011-2012学年高二(上)周考数学试卷(10)(解析版) 题型:选择题

已知椭圆的左焦点为F,A(-a,0),B(0,b)为椭圆的两个顶点,若F到AB的距离等于,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年内蒙古包头市高考数学三模试卷(文科)(解析版) 题型:解答题

已知椭圆的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点().

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第61课时):第八章 圆锥曲线方程-椭圆(解析版) 题型:选择题

已知椭圆的左焦点为F,A(-a,0),B(0,b)为椭圆的两个顶点,若F到AB的距离等于,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案