精英家教网 > 高中数学 > 题目详情

必做题
当n≥1,n∈N*时,
(1)求证:Cn1+2Cn2x+3Cn3x2+…+(n-1)Cnn-1xn-2=n(1+x)n-1
(2)求和:12Cn1+22Cn2+32Cn3+…+(n-1)2Cnn-1+n2Cnn

证明:(1)设f(x)=(1+x)n=Cn°+Cn1x+Cn2x2+Cn3x3+…+Cnnxn…①,
①式两边求导得:n(1+x)n-1=Cn1+2Cn2x+3Cn3x2+…+(n-1)Cnn-1xn-2+nCnnxn-1,…②
(2)②的两边同乘x得:nx(1+x)n-1=Cn1x2Cn2x2+3Cn3x3+…+(n-1)Cnn-1xn-1+nCnnxn,…③,
③式两边求导得:n(1+x)n-1+n(n-1)x(1+x)n-2=Cn1+22Cn2x+32Cn3x2+…+(n-1)2Cnn-1xn-2+n2Cnnxn-1,…④,
④中令x=1得,Cn1+22Cn2+32Cn3+…+(n-1)2Cnn-1+n2Cnn=n2n-1+n(n-1)2n-2=2n-2•n(n+1).
分析:(1)构造函数f(x)=(1+x)n利用,二项式定理展开,求导数即可得到结果.
(2)利用(1)的结论,两边同乘x然后求导数,通过x=1即可证明结果.
点评:本题考查二项式定理的展开式的应用,考查赋值法与函数的导数的应用,考查计算能力,构造函数是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

[必做题]
已知整数n≥4,集合M={1,2,3,…n}的所有3个元素的子集记为A1,A2,…,AC
(1)当n=5时,求集合A1,A2,…,AC中所有元素之和;
(2)设mi为Ai中的最小元素,设pn=m1+m2+…+mc,试求pn(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江苏二模)必做题
当n≥1,n∈N*时,
(1)求证:Cn1+2Cn2x+3Cn3x2+…+(n-1)Cnn-1xn-2=n(1+x)n-1
(2)求和:12Cn1+22Cn2+32Cn3+…+(n-1)2Cnn-1+n2Cnn

查看答案和解析>>

科目:高中数学 来源:江苏二模 题型:解答题

必做题
当n≥1,n∈N*时,
(1)求证:Cn1+2Cn2x+3Cn3x2+…+(n-1)Cnn-1xn-2=n(1+x)n-1
(2)求和:12Cn1+22Cn2+32Cn3+…+(n-1)2Cnn-1+n2Cnn

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏锡常镇四市高考数学二模试卷(解析版) 题型:解答题

必做题
当n≥1,n∈N*时,
(1)求证:Cn1+2Cn2x+3Cn3x2+…+(n-1)Cnn-1xn-2=n(1+x)n-1
(2)求和:12Cn1+22Cn2+32Cn3+…+(n-1)2Cnn-1+n2Cnn

查看答案和解析>>

同步练习册答案