给定数列
.对
,该数列前
项的最大值记为
,后
项
的最小值记为
,
.
(Ⅰ)设数列
为
,
,
,
,写出
,
,
的值;
(Ⅱ)设![]()
是公比大于
的等比数列,且
.证明:
是等比数列.
(Ⅲ)设
是公差大于
的等差数列,且
,证明:
是等差数列.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:上海市奉贤区2011届高三12月调研测试数学文科试题 题型:044
数列{an}的前n项和记为Sn,前kn项和记为
Skn(n,k∈N*),对给定的常数k,若
是与n无关的非零常数t=f(k),则称该数列{an}是“k类和科比数列”,
(1)已知Sn=
an-
(n∈N*),求数列{an}的通项公式;
(2)在(1)的条件下,数列an=2cn,求证数列{cn}是一个“1类和科比数列”;
(3)、设等差数列{bn}是一个“k类和科比数列”,其中首项b1,公差D,探究b1
与D的数量关系,并写出相应的常数t=f(k);
查看答案和解析>>
科目:高中数学 来源:2013年普通高等学校招生全国统一考试北京卷文数 题型:044
给定数列a1,a2,……,an.对i=1,2,3,…,n-1,该数列前i项的最大值记为Ai,后n-i项ai+1,ai+2,……,an的最小值记为Bi,di=Ai-Bi.
(1)设数列{an}为3,4,7,1,写出d1,d2,d3的值.
(2)设a1,a2,……,an(n≥4)是公比大于1的等比数列,且a1>0,证明d1,d2,……,dn-1是等比数列.
(3)设d1,d2,……,dn-1是公差大于0的等差数列,且d1>0,证明a1,a2,……,an-1是等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com