精英家教网 > 高中数学 > 题目详情
10.已知集合M={x|x2+px+q=0}={2},求实数p,q的值.

分析 利用方程有重根推出结果即可.

解答 解:集合M={x|x2+px+q=0}={2},
可得:△=p2-4q=0.并且4+2p+q=0.
解得p=-4,q=4.

点评 本题考查集合相等的充要条件,转化思想的应用,方程的思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{x+\frac{1}{4x},x>o}\\{x+1,x≤0}\end{array}\right.$,h(x)=g[f(x)].
(1)求函数h(x)的单调递增区间.
(2)若关于x的方程h(x)-a=0有4个不同的实数很,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在三棱锥ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点.
(1)证明:A1B1⊥平面PMN;
(2)求三棱锥P-A1MN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,既是偶函数,周期为π的是(  )
A.y=sin|x|B.y=|tanx|C.y=|sin2x|D.y=cos(2x+$\frac{x}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\left\{\begin{array}{l}{|sinx|,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,函数g(x)=$\left\{\begin{array}{l}{lg(-x),x<0}\\{{x}^{2},x≥0}\end{array}\right.$,则f(x)=g(x)根的个数是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知cos($\frac{3π}{2}$-φ)=$\frac{3}{5}$,且|φ|<$\frac{π}{2}$,则tanφ=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(α)=$\frac{sin(π-α)cos(\frac{5π}{2}-α)tan(-α+π)}{tan(-\frac{π}{2}-α)sin(-π-α)}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{7π}{2}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:
男公务员女公务员
生二胎4020
不生二胎2020
(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在多面体PABCD中,△ABC是边长为2的正三角形,BD=DC=$\sqrt{3}$,AD=$\sqrt{5}$,PA⊥平面ABC.
(1)求证:PA∥平面BCD;
(2)求三棱锥D-BCP的体积.

查看答案和解析>>

同步练习册答案