精英家教网 > 高中数学 > 题目详情

曲线y=-x3+3x2在点(1,2)处的切线方程为________.

y=3x-1
分析:根据曲线方程y=-x3+3x2,对f(x)进行求导,求出f′(x)在x=1处的值即为切线的斜率,曲线又过点(1,2)利用点斜式求出切线方程;
解答:∵曲线y=-x3+3x2
∴y′=-3x2+6x,
∴切线方程的斜率为:k=y′|x=1=-3+6=3,
又因为曲线y=-x3+3x2过点(1,2)
∴切线方程为:y-2=3(x-1),
即y=3x-1,
故答案为:y=3x-1.
点评:此题主要考查导数研究曲线上某点的切线方程,要求切线方程,首先求出切线的斜率,利用了导数与斜率的关系,这是高考常考的知识点,此题是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点P是曲线y=x3-
3
x+
2
3
上的任意一点,点P处的切线的倾斜角为α,则α的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

9、在曲线y=-x3+3x-1的所有切线中,斜率为正整数的切线的条数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x3-
3
x+2上的任意一点P处切线的斜率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=x3+3x,
(1)求这条曲线平行于直线y=15x+3的切线方程;
(2)求过(0,2)的这条曲线切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是曲线y=x3-
3
x+
3
5
上的任意一点,点P处切线的倾斜角为α,则角α的取值范围是(  )
A、[0,
3
]
B、[0,
π
2
)∪[
3
,π)
C、(
π
2
3
]
D、[
π
3
3
]

查看答案和解析>>

同步练习册答案