科目:高中数学 来源: 题型:
| 5 |
| 4 | ||
|
| ||
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年赤峰二中模拟理) 已知F1(- 2, 0), F2 (2, 0), 点P满足| PF1| - | PF2| = 2, 记点P的轨迹为E.
(Ⅰ) 求轨迹E的方程;
(Ⅱ) 若直线l过点F2且与轨迹E交于P、Q两点,
①无论直线l绕点F2怎样转动, 在x轴上总存在定点M(m, 0), 使MP ^ MQ恒成立, 求实数m的值;
②过P、Q作直线x =
的垂线PA、QB, 垂足分别为A、B, 记l =
, 求l的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年宝鸡市质检二理) 在直角坐标系
中,已知定点F(1,0)设平面上的动点M在直线
上的射影为N,且满足
.
(1)求动点M的轨迹C的方程;
(2)若直线l是上述轨迹C在点M(顶点除外)处的切线,证明直线MN与l的夹角等于直线ME与l的夹角;
(3)设MF交轨迹C于点Q,直线l交x轴于点P,求△MPQ面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年宝山区模拟理 ) (18分)已知椭圆C:
(a>b>0)的一个焦点到长轴的两个端点的距离分别为
。
(1)求椭圆的方程;
(2)设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)如图,过原点O任意作两条互相垂直的直线与椭圆
(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com