精英家教网 > 高中数学 > 题目详情

【题目】已知是半径为2的球面上的点,,点上的射影为,则三棱锥体积的最大值是( .

A.B.C.D.

【答案】B

【解析】

可以判断出点在底面的射影的位置,这样可以确定球心位置,利用勾股定理、直角三角形的性质可以求出点到底面的距离,利用相似三角形的性质,可以求出三角形的面积表达式,最后利用导数求出其面积的最大值,最后也就求出了体积的最大值,

因为,所以点在底面的射影是直角三角形斜边中点,所以球心在线段的延长线上,设,因此

,即.

,垂足为,设

,可得

,则有,由,可得

时,,函数单调递增,

时,,函数单调递减,故当,函数有最大值,最大值为:.三角形的面积的最大值为.

三棱锥体积的最大值是.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某品牌汽车4S店,对该品牌旗下的A型、B型、C型汽车进行维修保养,汽车4S店记录了100辆该品牌三种类型汽车的维修情况,整理得下表:

车型

A

B

C

频数

20

40

40

假设该店采用分层抽样的方法从上述维修的100辆该品牌三种类型汽车中随机取10辆进行问卷回访.

1)求A型、B型、C型各车型汽车抽取的数目;

2)维修结束后这100辆汽车的司机采用“100分制”打分的方式表示对4S店的满意度,按照大于等于80为优秀,小于80为合格,得到如下列联表:

优秀

合格

合计

男司机

10

38

48

女司机

25

27

52

合计

35

65

100

问能否在犯错误概率不超过0.01的前提下认为司机对4S店满意度与性别有关系?请说明原因.

(参考公式:

附表:

0.100

0.050

0.010

0.001

K

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t为参数,aR),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ2cosθ

1)求直线l的普通方程及曲线C的直角坐标方程;

2)若直线l过点P11)且与曲线C交于AB两点,求|PA|+|PB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:

消费次第

1

2

3

4

≥5

收费比率

1

0.95

0.90

0.85

0.80

该公司注册的会员中没有消费超过5次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据

如下:

消费次数

1

2

3

4

5

人数

60

20

10

5

5

假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:

(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;

(2)以事件发生的频率作为相应事件发生的概率, 设该公司为一位会员服务的平均利润为元,求大于40的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数, ,函数 (其中是自然对数的底数).

(1)过坐标原点作曲线的切线,设切点为,求证:

(2)令,若函数在区间上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

1)求函数的解析式;

2)若关于的方程fx)=kex(其中e为自然对数的底数)恰有两个不同的实根,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且a≠0).

(1)求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)若函数f(x)的极小值为,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了放射性物质因衰变而减少这一规律.已知样本中碳的质量随时间(单位:年)的衰变规律满足表示碳原有的质量),则经过年后,碳的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳的质量是原来的,据此推测良渚古城存在的时期距今约在________年到年之间.(参考数据:

查看答案和解析>>

同步练习册答案