【题目】已知椭圆
:
的焦距为
,点
在椭圆
上,且
的最小值是
(
为坐标原点).
(1)求椭圆
的标准方程.
(2)已知动直线
与圆
:
相切,且与椭圆
交于
,
两点.是否存在实数
,使得
?若存在,求出
的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设PC与平面ABCD所成的角的正弦为
,AP=1,AD=
,求三棱锥E-ACD的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个说法,其中正确的是( )
A.命题“若
,则
”的否命题是“若
,则
”
B.“
”是“双曲线
的离心率大于
”的充要条件
C.命题“
,
”的否定是“
,
”
D.命题“在
中,若
,则
是锐角三角形”的逆否命题是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解某产品的获利情况,将今年1至7月份的销售收入
(单位:万元)与纯利润
(单位:万元)的数据进行整理后,得到如下表格:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售收入 | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
纯利润 | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
该公司先从这7组数据中选取5组数据求纯利润
关于销售收入
的线性回归方程,再用剩下的2组数据进行检验.假设选取的是2月至6月的数据.
(1)求纯利润
关于销售收入
的线性回归方程(精确到0.01);
(2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?
参考公式:
,
,
,
;参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,抛物线C:y2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为( )
A. 4B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的倾斜角为
,且经过点
.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线
,从原点O作射线交
于点M,点N为射线OM上的点,满足
,记点N的轨迹为曲线C.
(Ⅰ)求出直线
的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线
与曲线C交于P,Q两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的离心率为
,长轴的左、右端点分别为
,
.
![]()
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于P,Q两点,直线
,
交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的一个焦点为
,点
在
上.
(1)求椭圆
的方程;
(2)若直线
:
与椭圆
相交于
,
两点,问
轴上是否存在点
,使得
是以
为直角顶点的等腰直角三角形?若存在,求点
的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com