精英家教网 > 高中数学 > 题目详情

(本小题满分16分)已知负数a和正数b,令a1=a,b1=b,且对任意的正整数k,当≥0时,有ak+1=ak,bk+1=;当<0,有ak+1 =,bk+1 = bk.(1)求bn-an关于n的表达式; (2)是否存在a,b,使得对任意的正整数n都有bn>bn+1?请说明理由.(3)若对任意的正整数n,都有b2n-1>b2n,且b2n=b2n+1,求bn的表达式.w.w.w.k.s.5.u.c.o.m             

(Ⅰ) bn-an=(b-a)()n-1.  (Ⅱ) 不存在 (Ⅲ)


解析:

:(Ⅰ)当≥0时,bk+1-ak+1= -ak= ;

当<0, bk+1-ak+1 = bk- = .

所以,总有bk+1-ak+1 = (bk-ak),                           ………………3分

因此,数列{bn-an}是首项为b-a,公比为的等比数列.

所以bn-an=(b-a)()n-1.                ………………5分

 (Ⅱ) 假设存在a,b,对任意的正整数n都有bn>bn+1,即an=an+1

所以an =an-1…= a1=a,又bn-an=(b-a)()n-1,所以bn=a+ (b-a)()n-1,……… 8分

又≥0,即a+ (b-a)()n≥0, 即2n≤, 

因为是常数,故2n≤不可能对任意正整数n恒成立.

故不存在a,b,使得对任意的正整数n都有bn>bn+1.        …………11分

(Ⅲ)由b2n-1>b2n,可知a2n -1=a2n,b2n=,

所以b2n=,即b2n-b2n-1=-( b2n-a2n)=- (b-a) ()2n-1.    w.w.w.k.s.5.u.c.o.m                

又b2n=b2n+1,故b2n+1-b2n-1=-( b2n-a2n)= (a-b) ()2n-1,                  …………13分             

∴b2n-1= (b2n-1-b2n-3)+( b2n-3-b2n-5)+…+( b3-b1)+b1

= (a-b)[ ()2n-3+ ()2n-5+…+ ()1]+b=(a-b)+b= (a-b)[ 1- ()n-1]+b.…15分

当n为奇数时,令n=2m-1,可得bn=b2m-1= (a-b)[ 1- ()m-1]+b= (a-b)[ 1- ()n-1]+b,

当n为偶数时,可得bn=bn+1= (a-b)[ 1- ()n]+b故……16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010江苏卷)18、(本小题满分16分)

在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M,其中m>0,

(1)设动点P满足,求点P的轨迹;

(2)设,求点T的坐标;

(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。

查看答案和解析>>

科目:高中数学 来源:2010年泰州中学高一下学期期末测试数学 题型:解答题

(本小题满分16分)
函数(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,对任意时,恒成立,求实数的范围;
(Ⅲ)如果,当“对任意恒成立”与“内必有解”同时成立时,求 的最大值.

查看答案和解析>>

科目:高中数学 来源:2014届江苏大丰新丰中学高二上期中考试文数学试卷(解析版) 题型:解答题

(本小题满分16分)     本题请注意换算单位

某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。

(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;

(总开发费用=总建筑费用+购地费用)

(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题

(本小题满分16分)设命题:方程无实数根; 命题:函数

的值域是.如果命题为真命题,为假命题,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题

(本小题满分16分)

已知函数f(x)=为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为

(Ⅰ)求f)的值;

(Ⅱ)将函数yf(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数yg(x)的图象,求g(x)的单调递减区间.

 

查看答案和解析>>

同步练习册答案