精英家教网 > 高中数学 > 题目详情

如图正三棱柱ABCA1B1C1底面边长与高相等,截面PAC把棱柱分成两部分的体积之比为51,则二面角PACB的大小为    

     A30°   B45°    C60°   D75°

 

答案:A
解析:

解:截面PAC把棱柱分成两部分的体积之比为5∶1,∴ 点PBB1的中点,取AC的中点M,连接PMBM,则∠PMB为所求,tan∠PMB=,∴二面角PACB的大小为30°,选A

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图正三棱柱ABC-A1B1C1AA1=
2
,AB=2,若N为棱AB中点.
(1)求证:AC1∥平面NB1C;
(2)求A1C1与平面NB1C所成的角正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图正三棱柱ABC-A1B1C1中,底面边长为2,侧棱长为
2

经过对角线AB1的平面交棱A1C1于点D.
(Ⅰ)试确定D点的位置使平面AB1D∥BC1,并证明你的结论;
(Ⅱ)在(Ⅰ)的条件下,求二面角A1-AB1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

侧棱垂直于底面且底面是正三角形的三棱柱叫做正三棱柱;如图正三棱柱ABC-A′B′C′的底面边长为
3
,高为2,一只蚂蚁要从顶点A沿三棱柱的表面爬到顶点C′,若侧面AA′C′C紧贴墙面(不能通行),则爬行的最短路程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正三棱柱ABC-A1B1C1中,底面边长为a,在侧棱BB1上截取BD=
a2
,在侧棱CC1上截取CE=a,过A,D,E作棱柱的截面.
(1)求证:截面ADE⊥侧面ACC1A1
(2)求截面ADE与底面ABC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分) 如图,正三棱柱ABC—A1B1C1的所有棱长均为2,P是侧棱AA1上任意一点.

(1)求证:B1P不可能与平面ACC1A1垂直;

(2)当BC1⊥B1P时,求线段AP的长;

(3)在(2)的条件下,求二面角CB1PC1的大小.

查看答案和解析>>

同步练习册答案