精英家教网 > 高中数学 > 题目详情
如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2
2
,E、F分别是AB、PD的中点.
(Ⅰ)求证:平面PCE⊥平面PCD;
(Ⅱ)求四面体PEFC的体积.
分析:(Ⅰ)由PA=AD=2,知AF=PD,由PA垂直于矩形ABCD所在的平面,知PA⊥CD,由AD⊥CD,知CD⊥平面PAD,由此能够证明平面PCE⊥平面PCD.
(Ⅱ)由GE⊥平面PCD,知EG为四面体PEFC的高,由GF∥CD,知GF⊥PD,由此能求出四面体PEFC的体积.
解答:解:(Ⅰ)∵PA=AD=2,∴AF=PD,
∵PA垂直于矩形ABCD所在的平面,CD?平面ABCD,
∴PA⊥CD,
∵AD⊥CD,PA∩AD=A,∴CD⊥平面PAD,
∵AF?平面PAD,∴AF⊥CD,
∵PD∩CD=D,∴AF⊥平面PCD,
∴GE⊥平面PCD,
∵GE?平面PEC,∴平面PCE⊥平面PCD.
(Ⅱ)由(Ⅰ)知GE⊥平面PCD,
∴EG为四面体PEFC的高,
又∵GF∥CD,∴GF⊥PD,
∵EG=AF=
2
,GF=
1
2
CD=
2
S△PCF=
1
2
PD•GF=2

∴四面体PEFC的体积V=
1
3
S△PCF•EG
=
2
2
3
点评:本题考查平面与平面垂直的证明,考查四面体的体积的求法,解题时要认真审题,注意空间想象能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2
2
,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)若二面角P-CD-B为45°,求证:平面PCE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA垂直于矩形ABCD所在的平面,M、N分别是AB、PC的中点
(1)求证:MN∥平面PAD;
(2)若∠PAD=45°,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,PA垂直于矩形ABCD所在平面,PA=AD,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2
2
,E,F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)求证:平面PCE⊥平面PCD;
(Ⅲ)求二面角F-EC-D的大小.

查看答案和解析>>

同步练习册答案