精英家教网 > 高中数学 > 题目详情
设函数y=2cos(ωx+θ)(0<θ<
π
2
)
的图象过点P(0,1),则函数y=sin(2x+θ)的图象与x轴的交点中离原点最近的一个点的坐标是
(-
π
6
,0)
(-
π
6
,0)
分析:根据题意可得:2cosθ=1,即cosθ=
1
2
,结合θ的范围可得θ=
π
3
,即可得到函数y=sin(2x+θ)的解析式,然后得到函数y=sin(2x+
π
3
)与x轴的交点的横坐标为:
2
-
π
6

进而得到答案.
解答:解:因为函数y=2cos(ωx+θ)(0<θ<
π
2
)
的图象过点P(0,1),
所以2cosθ=1,即cosθ=
1
2

所以θ=
π
3

所以函数y=sin(2x+θ)=sin(2x+
π
3
),
所以函数y=sin(2x+
π
3
)与x轴的交点的横坐标为:
2
-
π
6

所以函数的图象与x轴的交点中离原点最近的一个点的坐标是(-
π
6
,0)

故答案为:(-
π
6
,0)
点评:本题主要考查特殊角的三角函数值,以及三角函数的有关性质,此题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于下列命题:
①在△ABC中,若sin2A=sin2B,则△ABC为等腰三角形;
②已知a,b,c是△ABC的三边长,若a=2,b=5,A=
π
6
,则△ABC有两组解;
③设a=sin
2012π
3
b=cos
2012π
3
c=tan
2012π
3
,则a>b>c;
④将函数y=2sin(3x+
π
6
)
图象向左平移
π
6
个单位,得到函数y=2cos(3x+
π
6
)
图象.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于下列命题:
①在△ABC中,若sin2A=sin2B,则△ABC为等腰三角形;
②已知a,b,c是△ABC的三边长,若a=2,b=5,A=
π
6
,则△ABC有两组解;
③设a=sin
2012π
3
b=cos
2012π
3
c=tan
2012π
3
,则a>b>c;
④将函数y=2sin(3x+
π
6
)
图象向左平移
π
6
个单位,得到函数y=2cos(3x+
π
6
)
图象.
其中正确命题的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+cosx+cos2x+cos3x
1-cosx-2cos2x

(1)当sinθ-2cosθ=2时,求f(θ)的值;
(2)当k=
f(x)-1
f(x)+2
时,求k的取值范围.
(3)设函数y=
f(
π
2
-x)
f(x)+4
,x∈(0,
π
6
) ∪(
π
6
,π)
,求函数y的最小值.
注:sinθ+sinφ=2sin
θ+φ
2
cos
θ-φ
2
,cosθ+cosφ=2cos
θ+φ
2
cos
θ-φ
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于下列命题:
①在△ABC中,若sin2A=sin2B,则△ABC为等腰三角形;
②已知a,b,c是△ABC的三边长,若a=2,b=5,A=
π
6
,则△ABC有两组解;
③设a=sin
2012π
3
b=cos
2012π
3
c=tan
2012π
3
,则a>b>c;
④将函数y=2sin(3x+
π
6
)
图象向左平移
π
6
个单位,得到函数y=2cos(3x+
π
6
)
图象.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案