精英家教网 > 高中数学 > 题目详情

(1)已知tanα=数学公式,计算数学公式
(2)已知13sinx+5cosy=9,13cosx+5siny=15,求sin(x+y)

解:(1)因为=;又已知tanα=
所以上式==
(2)因为13sinx+5cosy=9,
所以(13sinx+5cosy)2=81,
即169sin2x+25cos2y+130sinxcosy=81…①,
因为13cosx+5siny=15,
所以(13cosx+5siny)2=225
所以169cos2x+25sin2y+130sinycosx=225…②,
①+②得,169+25+130sin(x+y)=81+225,
所以sin(x+y)==
分析:(1)把所求的表达式分子、分母同除cosα,得到tanα的表达式,代入已知即可得到结果.
(2)把两个表达式两边平方,然后相加,即可确定所求表达式,求出值即可.
点评:本题是中档题,考查三角函数的化简求值,平方关系式,两角和与差的三角函数,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知tanα=-2,且α是第二象限的角,求sinα和cosα;
(2)已知0<x<
π
4
,sin(
π
4
-x)=
5
13
,求
cos2x
cos(
π
4
+x)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tan(α+3π)=3,求
sinα-2cosα
sinα+cosα
的值;
(2)已知α为第二象限角,化简cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=-3,且α是第二象限的角,求sinα和cosα;
(2)已知sinα-cosα=-
5
5
 ,π<α<2π,求 tanα 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=2,求
2sinα-3cosα
sinα+cosα
和sinα•cosα+cos2α的值;
(2)已知cos(a-β)=-
4
5
cos(a+β)=
4
5
,90°<a-β<180°,270°<a+β<360°,求cos2a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=3,计算  
4sinα-2cosα
5cosα+3sinα
的值
(2)当sinθ+cosθ=
3
3
时,求tanθ+
1
tanθ
的值.

查看答案和解析>>

同步练习册答案