精英家教网 > 高中数学 > 题目详情

(A)AB是圆O的直径,EF切圆O于C,AD⊥EF于D,AD=2,AB=6,则AC长为________
(B)若不等式|x-2|+|x+3|<a的解集为∅,则a的取值范围为________.
(C)参数方程数学公式(α是参数)表示的曲线的普通方程是________.

    (-∞,5]    (|x|≤2)
分析:(A)延长BA交EF于点M,由直角三角形相似求得MA,利用直角三角形中的边角关系求出cos∠COA,余弦定理求出 AC.
(B)|x-2|+|x+3|最小值为5,不等式|x-2|+|x+3|<a的解集为∅,故 a<5.
(C)参数方程(α是参数)化为普通方程为 y=3-,|x|≤2
解答:(A)延长BA交EF于点M,由于直角三角形MAD和直角三角形 MOC相似,∴=
=,∴MA=6,cos∠COA=cos∠DAM===
由余弦定理可得 AC==2,故答案为 2
(B)|x-2|+|x+3|表示数轴上的x对应点到-3和2对应点距离之和,最小值为5,不等式|x-2|+|x+3|<a的解集为∅,
故 a<5,故答案为   (-∞,5].
(C)参数方程(α是参数)化为普通方程为 y=3-,|x|≤2,故答案为  y=3-
|x|≤2,
点评:本题考查把参数方程化为普通方程的方法,余弦定理,绝对值不等式的解法,(A)中求出cos∠COA 的值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当m=
6
+
2
2
时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

是一常数,过点的直线与抛物线交于相异两点AB,以线段AB为直经作圆HH为圆心)。试证抛物线顶点在圆H的圆周上;并求圆H的面积最小时直线AB的方程.

  
     

Y

     
 

 


  
     

y2=2px

     
 

  
     

B

     
 

 

 

 

 


  
     

X

     
 

  
     

Q(2p,0)

     
 
  
     

O

     
 

  
     

A

     
 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当数学公式时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省宿迁市沭阳县高一(下)期中数学试卷(解析版) 题型:解答题

如图,某城市设立以城中心O为圆心、r公里为半径的圆形保护区,从保护区边缘起,在城中心O正东方向上有一条高速公路PB、西南方向上有一条一级公路QC,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆O相切的直道BC.已知通往一级公路的道路AC每公里造价为a万元,通往高速公路的道路AB每公里造价是m2a万元,其中a,r,m为常数,设∠POA=θ,总造价为y万元.
(1)把y表示成θ的函数y=f(θ),并求出定义域;
(2)当时,如何确定A点的位置才能使得总造价最低?

查看答案和解析>>

科目:高中数学 来源:陕西省宝鸡中学2010届高三适应性训练(数学理) 题型:填空题

 A.(参数方程与极坐标)

直线与直线的夹角大小为         

 

B.(不等式选讲)要使关于x的不等式在实数

范围内有解,则A的取值范围是                  

C.(几何证明选讲) 如图所示,在圆O中,AB是圆O的直

径AB =8,E为OB.的中点,CD过点E且垂直于AB,

EF⊥AC,则

CF•CA=            

 

 

 

 

查看答案和解析>>

同步练习册答案