精英家教网 > 高中数学 > 题目详情
2.$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{a}^{n-1}}{1{+a}^{n}}$(a>0)=$\left\{\begin{array}{l}{a-\frac{1}{a},a>1}\\{0,0<a≤1}\end{array}\right.$.

分析 因为表达式中含有参数,所以要对参数进行分类讨论,最后再综合.

解答 解:该极限值与a的取值有关,分类讨论如下:
当a=1时,$\frac{{a}^{n+1}-{a}^{n-1}}{1{+a}^{n}}$=0恒成立,所以极限为0,
当a>1时,$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{a}^{n-1}}{1{+a}^{n}}$=$\underset{lim}{n→∞}$$\frac{a-{a}^{-1}}{1+{a}^{-n}}$=a-$\frac{1}{a}$;
当0<a<1时,$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{a}^{n-1}}{1{+a}^{n}}$=0,
综合以上讨论,$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{a}^{n-1}}{1{+a}^{n}}$=$\left\{\begin{array}{l}{a-\frac{1}{a},a>1}\\{0,0<a≤1}\end{array}\right.$,
故填:$\left\{\begin{array}{l}{a-\frac{1}{a},a>1}\\{0,0<a≤1}\end{array}\right.$.

点评 本题主要考查了极限及其运算,对于含参的极限问题应对参数进行分类讨论,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数y=3cos(2x+$\frac{π}{7}$)-2的最大值是(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设集合A={x|x2+2x-3=0|与B={x|ax+1=0|,试写出B⊆A的一个充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5,则总平均值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简:
(1)$\frac{cos(180°+α)sin(90°+α)tan(α+360°)}{sin(-α-180°)cos(-180°-α)cos(270°-α)}$.
(2)$\frac{1}{cosα\sqrt{1+ta{n}^{2}α}}$+$\sqrt{\frac{1+sinα}{1-sinα}}$-$\sqrt{\frac{1-sinα}{1+sinα}}$(其中α为第二象限角).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.证明$\underset{lim}{x→0}$$\frac{x}{|x|}$不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算:$\underset{lim}{n→∞}$$\frac{sinnπ}{n}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在正四棱柱ABCD-A1B1C1D1中,E、F分别是AA1、CC1的中点,AB=AD=1,AA1=$\sqrt{2}$.
(1)求证:平面B1C1E⊥平面ACD1
(2)证明平面B1C1E∥平面ADF,并求两个平面间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x-a.g(x)=alnx,h(x)=f(x)-g(x),其中a是常数.
(1)若f(x)对应的直线是函数g(x)图象的一条切线,求a的值;
(2)当a≤0时.若对任意不相等的x1,x2∈(0,1],都有|h(x1)-h(x2)|<2015|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求a的取值范围;
(3)若对任意的x1>x2>0,都有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>$\frac{{x}_{2}}{{{x}_{2}}^{2}+{{x}_{1}}^{2}}$,求a的取值范围.

查看答案和解析>>

同步练习册答案