精英家教网 > 高中数学 > 题目详情
(2012•包头一模)下列命题错误的是(  )
分析:A.我们知道:命题“若p,则q”的逆否命题是“若¬q,则¬p”,同时注意“x=y=0”的否定是“x,y中至少有一个不为0”,据此可以判断出A的真假.
B.依据“命题:?x0∈R,结论p成立”,则¬p为:“?x∈R,结论p的反面成立”,可以判断出B的真假.
C.由于sinA-sinB=2cos
A+B
2
sin
A-B
2
,因此在△ABC中,sinA>sinB?sin
A-B
2
>0?A>B.由此可以判断出C是否正确.
D.由向量
a
b
=|
a
||
b
|cos<
a
b
><0
,可得
a
b
的夹角
π
2
a
b
>≤π
,可以判断出D是否正确.
解答:解:A.依据命题“若p,则q”的逆否命题是“若¬q,则¬p”,可知:命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”.可判断出A正确.
B.依据命题的否定法则:“命题:?x0∈R,
x
2
0
-x0+1≤0”的否定应是“?x∈R,x2-x+1>0”,故B是真命题.
C.由于sinA-sinB=2cos
A+B
2
sin
A-B
2
,在△ABC中,∵0<A+B<π,∴0
A+B
2
π
2
,∴0<cos
A+B
2
<1

又0<B<A<π,∴0<A-B<π,∴0<
A-B
2
π
2
,∴0<sin
A-B
2
<1

据以上可知:在△ABC中,sinA>sinB?sin
A-B
2
>0?A>B.故在△ABC中,sinA>sinB是A>B的充要条件.
因此C正确.
D.由向量
a
b
=|
a
||
b
|cos<
a
b
><0
,∴cos<
a
b
><0
,∴
a
b
的夹角
π
2
a
b
>≤π

∴向量
a
b
的夹角不一定是钝角,亦可以为平角π,∴可以判断出D是错误的.
故答案是D.
点评:本题综合考查了四种命题之间的关系、命题的否定、三角形中的角大小与其相应的正弦值之间的大小关系、向量的夹角,解决问题的关键是熟练掌握其有关基础知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•包头一模)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2,AB=1.
(Ⅰ)求四棱锥P-ABCD的体积V;
(Ⅱ)若F为PC的中点,求证:平面PAC⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)与抛物线y2=8x有 一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线方程为
x2-
y2
3
=1
x2-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)函数f(x)=sin(ωx+?)(其中|?|<
π
2
)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•包头一模)在平面直角坐标系xoy中,曲线C1的参数方程为 
x=acosφ
y=bsinφ
(a>b>0,?为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,
3
2
)对应的参数φ=
π
3
,曲线C2过点D(1,
π
3
).
(Ⅰ)求曲线C1,C2的直角坐标方程;
(Ⅱ)若点A(ρ 1,θ),B(ρ 2,θ+
π
2
) 在曲线C1上,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

同步练习册答案