精英家教网 > 高中数学 > 题目详情
一个多面体的直观图,前视图(正前方观察),俯视图(正上方观察),侧视图(左侧正前方观察)如图所示.
(1)求A1A与平面ABCD所成角的大小及面AA1D1与面ABCD所成二面角的大小;
(2)求此多面体的表面积和体积.

【答案】分析:(1)先寻找直线与平面的所成角,取AB中点H,连接A1H,根据线面所成角的定义可知∠A1AB是A1A与平面ABCD所成的角,在三角形A1AB中求出此角的正切值即可,先寻找二面角的平面角,取AD中点K,连接D1K,KH,取HK的中点M,取A1D1的中点N,连接MN,AM,AN,根据二面角平面角的定义可知∠MAN就是面AA1D1与面ABCD所成的二面角,然后在三角形MAN中求出此角的余弦值即可.
(2)根据该多面体为长方体削去四个全等的三棱锥,先求出三棱锥的体积,然后利用长方体的体积减去四个全等的三棱锥的体积即可求出所求.
解答:解:(1)由已知图可得,平面A1AB⊥平面ABCD,取AB中点H,连接A1H,
在等腰△A1AB中,有A1H⊥AB,则A1H⊥平面ABCD.
∴∠A1AB是A1A与平面ABCD所成的角.
∵A1H=2AH,∴=2.
故A1A与平面ABCD所成角为arctan2.
取AD中点K,连接D1K,KH,
同理有D1K⊥平面ABCD,即△AHK是△AA1D1在平面ABCD内的射影.
取HK的中点M,取A1D1的中点N,连接MN,AM,AN,
则∠MAN就是面AA1D1与面ABCD所成的二面角.
∵MN=a,,∴.即
∴面AA1D1与面ABCD所成二面角的余弦值为
(2)∵该多面体为长方体削去四个全等的三棱锥,
此多面体的表面积
每个三棱锥的体积都为
∴此多面体的体积
点评:本题主要考查了线面所成角以及二面角的度量,三棱锥的体积和表面积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网一个多面体的直观图和三视图如图所示,E,F分别为PB,PC中点.
(1)证明:EF∥平面PAD;
(2)求三棱锥E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点
(1)求证:GN⊥AC;
(2)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC.并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网一个多面体的直观图,正(主)视图,侧(左)视图如下所示,其中正(主)视图、侧(左)视图为边长为a的正方形.
(1)请在指定的框内画出多面体的俯视图;
(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;
(3)求该多面体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图如图所示(其中M,N分别为AF,BC的中点)求多面体A-CDEF的体积.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图及三视图如图所示:(其中M、N、P、Q分别是FC、AF、DC、AD的中点)
(1)直线DE与直线BF的位置关系是什么、夹角大小为多少?
(2)判断并证明直线MN与直线PQ的位置关系;
(3)求三棱锥D-ABF的体积.

查看答案和解析>>

同步练习册答案