精英家教网 > 高中数学 > 题目详情
已知f(x)=2|x-1|,该函数在区间[a,b]上的值域为[1,2],记满足该条件的实数a、b所形成的实数对为点P(a,b),则由点P构成的点集组成的图形为(  )
分析:由指数函数的图象和性质,我们易构造出满足条件函数f(x)=2|x-1|在闭区间[a,b]上的值域为[1,2]的不等式组,画出函数的图象后与答案进行比照,即可得到答案.
解答:解:∵函数f(x)=2|x-1|的图象为开口方向朝上,以x=1为对称轴的曲线,如图.
当x=1时,函数取最小值1,
若y=2|x-1|=2,则x=0,或x=1
而函数y=2|x-1|在闭区间[a,b]上的值域为[1,2],
a=0
1≤b≤2
0<a≤1
b=2

则有序实数对(a,b)在坐标平面内所对应点组成图形为

故选C.
点评:本题考查的知识点是指数函数的性质,函数的值域,其中熟练掌指数函数在定区间上的值域问题,将已知转化为关于a,b的不等式组,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=loga(1-x),g(x)=loga(1+x)(a>0,a≠1).
(1)判断f(x)与g(x)图象的位置关系;
(2)当0<a<1时,比较|f(x)|与|g(x)|的大小;
(3)讨论关于x的方程ag(-x2+x+1)=af(k)-x的实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2-|x|,g(x)=x2,设函数h(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
.关于h(x)有以下四个判断:
①函数h(x)的图象关于y轴对称;
②函数h(x)在[0,1]上是增函数;     
③函数h(x)的值域是[2,+∞);
④当1<m<2时,函数y=h(x)-m的图象与x轴有四个交点.
其中正确判断的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)(x∈R,x≠
1
a
)
满足ax•f(x)=2bx+f(x),a≠0,f(1)=1且使f(x)=2x成立的实数x有且只有一个.
(1)求f(x)的表达式;
(2)数列{an}满足:a1=
2
3
an+1=f(an),bn=
an
1-an
(n∈N*)
,证明:{bn}为等比数列.
(3)在(2)的条件下,若cn=
1
bn+(-1)n
(n∈N*),Sn=c1+c2+…+cn
,求证:Sn
3
2
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的解析式:
(1)已知f(
x
+1
)=x+2
x
,求f(x+1);
(2)设f(x)满足f(x)-2f(
1
x
)=x,求f(x).

查看答案和解析>>

同步练习册答案