精英家教网 > 高中数学 > 题目详情
10.不等式(x-a)(ax-1)<0的解集是$(-∞,\frac{1}{a})∪(a,+∞)$,则实数a的取值范围是[-1,0).

分析 利用一元二次不等式的解集和对应方程之间的关系,将不等式转化为为一元二次方程根的问题进行求解即可.

解答 解:由题意,实数a不为零,不等式(ax-1)(x+1)<0可化为:
a(x-$\frac{1}{a}$)(x+1)<0,
而不等式的解集为是$(-∞,\frac{1}{a})∪(a,+∞)$,
说明一方面a<0,另一方面$\frac{1}{a}$≤a,
解之得-1≤a<0,
∴实数a的取值范围是[-1,0).
故答案为:[-1,0).

点评 本题以一元二次不等式的解集为例,考查了一元二次方程与不等式的联系等知识点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.平行于直线x-y-2=0,并且与它的距离为$\sqrt{2}$的直线方程为x-y=0或x-y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.cos24°cos36°-sin24°cos54°=(  )
A.cos12°B.sin12°C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.P为椭圆$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1上的一点,F1,F2为焦点,且∠F1PF2=30°.
(1)求△F1PF2的周长;
(2)求|PF1|•|PF2|;
(3)求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,已知正方体ABCD-A1B1C1D1,E、F分别是正方形A1B1C1D1和ADD1A1的中心,求EF和CD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系xOy,已知平面区域A={(x,y)|x+y≤2,x≥0,y≥0},则平面区域B={(x+y,x-y)|(x,y)∈A}的面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.方程${x^2}+{y^2}+ax-2ay+a+\frac{1}{4}=0$为圆的方程,则a的范围为$(-∞,-\frac{1}{5})∪(1,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x2-4x-a≤0在x∈[0,1]上恒成立,则实数a的取值范围是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若关于x的不等式$\frac{bx}{ax+1}$+$\frac{dx+c}{cx+d}$<0的解集为(-2,-1)∪($\frac{1}{3}$,1),则关于x的不等式$\frac{b}{x+a}$+$\frac{cx+d}{dx+c}$<0的解集为$(-1,-\frac{1}{2})∪(1,3)$.

查看答案和解析>>

同步练习册答案