精英家教网 > 高中数学 > 题目详情
从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到频率分布直方图如下:

(Ⅰ)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(Ⅱ)若用分层抽样的方法从分数在的学生中共抽取3人,该3人中成绩在的有几人?
(Ⅲ)在(Ⅱ)中抽取的3人中,随机抽取2人,求分数在各1人的概率.
(Ⅰ)92分;(Ⅱ)1人;(Ⅲ).

试题分析:本题主要考查频率分布直方图的读图能力和计算能力,以及分层抽样的计算.第一问根据频率分布直方图,求该校高三学生本次数学考试的平均分,解决实际问题,公式为:每一个区间的中点×每一个长方形的高×组距,把所得结果相加即可;第二问利用频率=频数÷样本总数,利用公式先求出每个区间内的人数,再利用分层抽样求应抽取多少人;第三问,这问是对概率知识的考查,先把随机抽取的2人的所有情况一一列出,再挑选符合题意的情况,再求概率.
试题解析:(Ⅰ)由频率分布直方图,得该校高三学生本次数学考试的平均分为
                                                                                4分
(Ⅱ)样本中分数在的人数分别为6人和3人,
所以抽取的3人中分数在的人有(人).                 8分
(Ⅲ)由(Ⅱ)知:抽取的3人中分数在的有2人,记为,分数在的人有1人,记为,从中随机抽取2人,总的情形有三种.而分数在各1人的情形有两种,故所求概率.   
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在某大学联盟的自主招生考试中,报考文史专业的考生参加了人文基础学科考试科目“语文”和“数学”的考试.某考场考生的两科考试成绩数据统计如下图所示,本次考试中成绩在内的记为,其中“语文”科目成绩在内的考生有10人.

(1)求该考场考生数学科目成绩为的人数;
(2)已知参加本考场测试的考生中,恰有2人的两科成绩均为.在至少一科成绩为的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某次高三考试成绩中,随机抽取了9位同学的数学成绩进行统计。下表是9位同学的选择题和填空题的得分情况(选择题满分60分,填空题满分16分):
选择题
40
55
50
45
50
40
45
60
40
填空题
12
16

12
16
12
8
12
8
(Ⅰ)若这9位同学填空题得分的平均分为12分,试求表中的的值及他们填空题得分的标准差;
(Ⅱ)在(1)的条件下,记这9位同学的选择题得分组成的集合为A,填空题得分组成的集合为B。若同学甲的解答题的得分是46分,现分别从集合A、B中各任取一个值当作其选择题和填空题的得分,求甲的数学成绩高于100分的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

南昌市为增强市民的交通安全意识,面向全市征召“小红帽”志愿者在部分交通路口协助交警维持交通,把符合条件的1000名志愿者按年龄分组:第1组、第2组、第3组、第4组、第5组,得到的频率分布直方图如图所示:

(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者在五一节这天到广场协助交警维持交通,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,南昌市决定在这12名志愿者中随机抽取3名志愿者到学校宣讲交通安全知识,若表示抽出的3名志愿者中第3组的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表
组别
分组
频数
频率
第1组
[50,60)
8
0.16
第2组
[60,70)
a

第3组
[70,80)
20
0.40
第4组
[80,90)

0.08
第5组
[90,100]
2
b
 
合计


频率分布直方图


(Ⅰ)写出的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,设表示所抽取的2名同学中来自第5组的人数,求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了解某市民众对政府出台楼市限购令的情况,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令赞成的人数如下表:
月收入
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收入族”.
(1)根据已知条件完成下面的2×2列联表,问能否在犯错误的概率不超过0.01的前提下认为非高收入族赞成楼市限购令?
 
非高收入族
高收入族
合计
赞成
 
 
 
不赞成
 
 
 
合计
 
 
 
(2)现从月收入在[15,25)的人群中随机抽取两人,求所抽取的两人都赞成楼市限购令的概率.
附:K2
P(K2k0)
0.05
0.025
0.010
0.005
k0
3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个命题正确的是
①在频率分布直方图中估计平均数,可以用每个小矩形的高乘以底边的中点的横坐标之和;
②残差平方和越小的模型,拟合的效果越好;
③用相关指数来刻画回归效果,越小,说明模型的拟合效果越好;
④随机误差是衡量预报精确度的一个量,它满足
⑤对分类变量,它们的随机变量的观测值来说,越小,认为“有关系”的把握程度越大。
A.①③B.②④C.③⑤D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校举行运动会,组委会招墓了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余不喜爱。
(1)根据以上数据完成以下列联表:

(2)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?
(3)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率。
参考公式:(其中
 




是否有关联
没有关联
90%
95%
99%

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某商场在庆元宵促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元. 

查看答案和解析>>

同步练习册答案