精英家教网 > 高中数学 > 题目详情

(本小题满分13分)已知数列{an},定义n∈N+)是数列{an}的倒均数.    (1)若数列{an}的倒均数是,求数列{an}的通项公式;(2)若等比数列{bn}的首项为–1,公比为q =,其倒均数为Vn,问是否存在正整数m,使得当nm(n∈N+)时,Vn<–16恒成立?若存在,求m的最小值;若不存在,请说明理由.

(Ⅰ)    (Ⅱ)  m = 7.


解析:

(1)由   ①………1分

       当n = 1时,,∴a1 = 1.……2分

       当n≥2时,   ②

       ① – ②得,即,∴………分

       (2)bn =,

       ……8分

       令Vn<–16得. 即n

       当n = 6时,26 <16×6 +1,当n = 7时,27 = 128,16×7 + 1 = 113,27>16×7 + 1.

       下面证当n≥7(n∈N+)时,成立.…10分

       1°当n = 7时,已证;  2°假设当n = k时,2k>16k + 1成立,

       当n = k + 1时,=16k + 16k + 2 >16k + 16 +1 = 16(k + 1) + 1

       这就是说,当n = k + 1时,结论也成立.

       由1°,2°可知,当n≥7时,2n>16n + 1成立.故m的最小值为m = 7.

       此题也可用导数法证成立.………13分

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案