精英家教网 > 高中数学 > 题目详情

北京市各级各类中小学每年都要进行“学生体质健康测试”,测试总成绩满分为分,规定测试成绩在之间为体质优秀;在之间为体质良好;在之间为体质合格;在之间为体质不合格.
现从某校高三年级的名学生中随机抽取名学生体质健康测试成绩,其茎叶图如下:

(Ⅰ)试估计该校高三年级体质为优秀的学生人数;
(Ⅱ)根据以上名学生体质健康测试成绩,现采用分层抽样的方法,从体质为优秀和良好的学生中抽取名学生,再从这名学生中选出人.
(ⅰ)求在选出的名学生中至少有名体质为优秀的概率;
(ⅱ)求选出的名学生中体质为优秀的人数不少于体质为良好的人数的概率.

(Ⅰ)100;(Ⅱ)(ⅰ),(ⅱ)

解析试题分析:(Ⅰ)由茎叶图可知抽取的30名学生中体质优秀的有10人,所以优秀率为,用总数乘以优秀率即可得优秀的总人数。(Ⅱ)由茎叶图可知抽取的30名学生中体质优秀的有10人,体质为良好的15人。所以样本中体质为优秀和良好的学生的比为。分层抽样的特点是在各层按比例抽取,所以抽取的5人中有3人体质为良好有2人体质为优秀。(ⅰ)和(ⅱ)中的概率均属古典概型,用例举法分别求基本事件总数和所求事件包含的基本事件数即可。
试题解析:解:(Ⅰ)根据抽样,估计该校高三学生中体质为优秀的学生人数有人.   3分
(Ⅱ)依题意,体质为良好和优秀的学生人数之比为
所以,从体质为良好的学生中抽取的人数为,从体质为优秀的学生中抽取的人数为.                6分
(ⅰ)设在抽取的名学生中体质为良好的学生为,体质为优秀的学生为
则从名学生中任选人的基本事件有个,其中“至少有名学生体质为优秀”的事件有个.
所以在选出的名学生中至少有名学生体质为优秀的概率为.      10分
(ⅱ)“选出的名学生中体质为优秀的人数不少于体质为良好的人数”的事件有个.
所以选出的名学生中体质为优秀的人数不少于体质为良好的人数的概率为.13分
考点:1分层抽样;2古典概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

API
0~50
51~
100
101~
150
151~
200
201~
250
251~
300
>300
级 别


1
2
1
2

状 况


轻微
污染
轻度
污染
中度
污染
中度
重污染
重度
污染
 





对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.

(1)求直方图中x的值.
(2)计算一年中空气质量分别为良和轻微污染的天数.
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.
已知57=78125,27=128,++++=,365=73×5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6,
8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段,从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制直方图如图所示.

(1)这20个路段轻度拥堵、中度拥堵的路段各有多少个?
(2)从这20个路段中随机抽出的3个路段,用X表示抽取的中度拥堵的路段的个数,求X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人.
(1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名?
(2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

由某种设备的使用年限(年)与所支出的维修费(万元)的数据资料,算得
(Ⅰ)求所支出的维修费对使用年限的线性回归方程
(Ⅱ)判断变量之间是正相关还是负相关;
(Ⅲ)估计使用年限为8年时,支出的维修费约是多少.
附:在线性回归方程中,,其中
样本平均值,线性回归方程也可写为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两名同学参加“汉字听写大赛”选拔性测试.在相同的测试条件下,两人5次测试的成绩(单位:分)如下表:

(Ⅰ)请画出甲、乙两人成绩的茎叶图. 你认为选派谁参赛更好?说明理由(不用计算);
(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,求抽到的两个成绩中至少有一个高于
90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校900名学生在一次百米测试中,成绩全部介于秒与秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,下图是按上述分组方法得到的频率分布直方图.

(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;
(2)请估计学校900名学生中,成绩属于第四组的人数;
(3)请根据频率分布直方图,求样本数据的众数和中位数(保留两位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:


2
4
5
6
8

30
40
60
50
70
(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
(参考数据:    
参考公式:线性回归方程系数:

查看答案和解析>>

同步练习册答案