精英家教网 > 高中数学 > 题目详情
仓库有某产品50万元,每年综合消耗4%,若一直售不出去,多少年后降到36万元?(精确到1年)
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:设n后,由题意得到方程50(1-4%)n=36,解方程即可
解答: 解:设n后后降到36万元,由题意得到方程50(1-4%)n=36,
即(1-4%)n=0.72,
两边取常用对数得,
nlg0.96=log0.72,
∴n=
lg0.72
lg0,96
=
lg72-2
lg96-2
=
lg8+lg9-2
lg32+lg3
=
3lg2+2lg3-2
5lg2+lg3-2

∵lg2≈0.3010,lg3≈0.4771
∴n≈8
故8年后降到36万元
点评:本题主要考查增长率,关键是构建函数模型,从而得到方程,进而解决问题,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

今年10月在济南举办第十届中国艺术节,届时有很多国际友人参加活动.现有8名“十艺节”志愿者,其中志愿者A1,A2,A3通晓英语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓英语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是平行四边形,E为PA的中点.
(1)若F为线段PD靠近D的一个三等分点,求证BE∥平面ACF;
(2)若平面PAC⊥平面PCD求证:PC⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
(x≠0,a∈R),若f(x)在区间[2,+8)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次方程x2+(m-3)x+1=0的两根x1和x2满足x1<x2<1.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2+ax)ex(a≠0)
(1)f(x)在x=-3处取到极值,求f(x)的单调区间;
(2)是否存在实数a是f(x)≥a2x恒成立?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
1+x
1-x
,(a>0且a≠1)
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判断f(x)的奇偶性,并予以证明;
(Ⅲ)当a>1时,求使f(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2-
-x2+4x
的值域是(  )
A、[-2,2]
B、[1,2]
C、[0,2]
D、[-
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为π的正方形内的正弦曲线y=sinx与x轴围成的区域记为M(图中阴影部分),随机往正方形内投一个点P,则点P落在区域M内的概率是(  )
A、
1
π2
B、
2
π2
C、
3
π2
D、
4
π2

查看答案和解析>>

同步练习册答案