精英家教网 > 高中数学 > 题目详情
若椭圆和双曲线有相同焦点F1,F2,点P是两条曲线的一个公共点,并且
PF1
PF2
=0
,e1,e2分别为它们的离心率,则
1
e
2
1
+
1
e
2
2
的值是
2
2
分析:由题设中的条件,设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,根据椭圆和双曲线的性质以及勾弦定理建立方程,联立可得m,a,c的等式,整理即可得到结论
解答:解:由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,不妨令P在双曲线的右支上
由双曲线的定义|PF1|-|PF2|=2m  ①
由椭圆的定义|PF1|+|PF2|=2a  ②
又∠F1PF2=900,故|PF1|2+|PF2|2=4c2   ③
2+②2得|PF1|2+|PF2|2=2a2+2m2
-①2+②2得|PF1||PF2|=a2-m2
将④⑤代入③得a2+m2=c2,即
1
c2
a2
+
1
c2
m2
=1
,即
1
e
1
2
+
1
e
2
2
=2

故答案为2
点评:本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义焦点三角形中用勾弦定理建立三个方程联立求椭圆离心率e1与双曲线心率e2满足的关系式,解决本题的关键是根据所得出的条件灵活变形,凑出两曲线离心率所满足的方程来.
练习册系列答案
相关习题

科目:高中数学 来源:2012年人教A版高中数学选修2-1 2.3双曲线练习卷(解析版) 题型:填空题

若椭圆和双曲线有相同的焦点,点是两条曲线的一个交点,则的值为     

 

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学选修1-1 2.2双曲线练习卷(解析版) 题型:选择题

若椭圆和双曲线有相同的焦点,P是两曲线的一个公共点,则的值是( )

A.m-a                       B.

C.                   D.

 

查看答案和解析>>

科目:高中数学 来源:2010年哈尔滨市高一下学期期末考试数学卷 题型:选择题

若椭圆和双曲线有相同的焦点是椭圆与双曲线的一个交点,则等于:  (    )                              

  A.          B.      C.       D.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011山东省苍山县学年高二年级期末水平测试数学(理科) 题型:选择题

若椭圆和双曲线有相同的左、右焦点,P是两条曲线的一个交点,则的值是(    ).

       A.                                    B.         

       C.            D.

 

查看答案和解析>>

同步练习册答案