精英家教网 > 高中数学 > 题目详情
用两个平行平面同截一个直径为20cm的球面,所得截面圆的面积分别是64πcm2、36πcm2,则这两个平面间的距离是
 
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:先根据两个截面圆的面积分别求出对应圆的半径,再分析出两个截面所存在的两种情况,最后对每一种情况分别求出两个平行平面的距离即可.
解答: 解:设两个截面圆的半径别为r1,r2.球心到截面的距离分别为d1,d2.球的半径为R.
由πr12=36πcm2,得r1=6cm.
由πr22=64πcm2,得r2=8cm.
如图①所示.当球的球心在两个平行平面的外侧时,这两个平面间的距离为球心与两个截面圆的距离之差,即d2-d1=8-6=2cm.
如图②所示.当球的球心在两个平行平面的之间时,这两个平面间的距离为球心与两个截面圆的距离之和.
即d2+d1=8+6=14cm.
故答案为:2cm或14cm.
点评:本题主要考查两个平行平面间的距离计算问题.此题重点考查球中截面圆半径,球半径之间的关系以及空间想象能力和计算能力.本题的易错点在于只考虑一种情况,从而漏解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

幂函数f(x)=x -m2-2m+3(m∈Z)为偶函数,且在区间(0,+∞)上单调递增,则f(2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求以下函数的导数
(1)y=(x-2)(x+3)2
(2)y=x2(x+lnx)

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥的顶点都在同一球面上,若该棱锥的体积为
16
3
,底面边长为2,则该球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中错误的是(  )
A、命题“?x∈R,x2+1≥0”的否定是:?x∈R,x2+1<0
B、在△ABC中,“sinA>sinB”是“∠A>∠B”的充要条件
C、命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”
D、若命题p:?x∈R,tanx=1,命题q:?x∈R,x2-x+1>0,则命题“p∧q”是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
π
6
)cosx-
1
2

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,若f(A)=
3
2
,∠B=
π
4
,AC=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的公比为q,a1=
3
2
,其前n项和为Sn(n∈N*),且S2,S4,S3成等差数列.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=Sn-
1
Sn
(n∈N*),求bn的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足iz=2+4i,i为虚数单位,则在复平面内z对应的点的坐标是(  )
A、(4,2)
B、(4,-2)
C、(2,4)
D、(2,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M(x,y)在直线PQ上,且2
PM
+3
MQ
=0,
RP
PM
=0,则4x+2y-3的最小值为
 

查看答案和解析>>

同步练习册答案