精英家教网 > 高中数学 > 题目详情

 设是函数的图象上的任意两点. 的中点,的横坐标为.    

(1)   求的纵坐标.

(2)   设,其中,求.

(3)   对于(2)中的,已知,其中,设为数列的前项的和,求证.

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(1)的中点,的横坐标为,       ……1分

    

     ……2分

的纵坐标为                                                ……3分

(2)由(1)知,当时,                 ……4分

……①   

……②                     ……5分

两式子相加得

……6分

                                                        ……7分

(3),                       ……8分

,              ……9分

,                 ……10分

          

                      ……11分

                                 ……12分

,  故.                   ……14分

另外的放缩方法:

,            

,               

 (从第3项开始放缩) 

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义域在[x1,x2]的函数y=f(x)的图象为C,C的端点分别为A、B,M是C上的任一点,向量
OA
=(x1y1),
OB
=(x2y2),
OM
=(x,y)
,若x=λx1+(1-λ)x2,记向量
ON
OA
+(1-λ)
OB
,现定义“函数y=f(x)在[x1,x2]上可在标准K下线性近似”是指|
MN
|≤K
恒成立,其中K是一个正数.
(1)证明:0≤λ≤1(2);
(3)请你给出一个标准K的范围,使得[0,1]上的函数y=x2(4)与y=x3(5)中有且只有一个可在标准K下线性近似.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,
1
2
,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x0<a,则f(x0)<0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定义域在[x1,x2]的函数y=f(x)的图象为C,C的端点分别为A、B,M是C上的任一点,向量
OA
=(x1y1),
OB
=(x2y2),
OM
=(x,y)
,若x=λx1+(1-λ)x2,记向量
ON
OA
+(1-λ)
OB
,现定义“函数y=f(x)在[x1,x2]上可在标准K下线性近似”是指|
MN
|≤K
恒成立,其中K是一个正数.
(1)证明:0≤λ≤1(2);
(3)请你给出一个标准K的范围,使得[0,1]上的函数y=x2(4)与y=x3(5)中有且只有一个可在标准K下线性近似.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省长沙市同升湖实验学校高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题

设定义域在[x1,x2]的函数y=f(x)的图象为C,C的端点分别为A、B,M是C上的任一点,向量,若x=λx1+(1-λ)x2,记向量,现定义“函数y=f(x)在[x1,x2]上可在标准K下线性近似”是指恒成立,其中K是一个正数.
(1)证明:0≤λ≤1(2);
(3)请你给出一个标准K的范围,使得[0,1]上的函数y=x2(4)与y=x3(5)中有且只有一个可在标准K下线性近似.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省大庆市铁人中学高三(上)第二次段考数学试卷(解析版) 题型:选择题

下列说法中,正确的是( )
①对于定义域为R的函数f(x),若函数f(x)满足f(x+1)=f(1-x),则函数f(x)的图象关于x=1对称;
②当a>1时,任取x∈R都有ax>a-x
③“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)上单调递增”的充分必要条件;
④设a∈{-1,1,,3},则使函数y=xa的定义域为R且该函数为奇函数的所有a的值为1,3;
⑤已知a是函数f(x)=2x-log0.5x的零点,若0<x<a,则f(x)<0.
A.①④
B.①④⑤
C.②③④
D.①⑤

查看答案和解析>>

同步练习册答案