精英家教网 > 高中数学 > 题目详情
数列{}首项a1=1,前n项和之间满足
(1)求证:数列是等差数列;
(2)求数列{}的通项公式;
(3)设存在正数k,使对一切n∈N*都成立,求k的最大值.
(1)证明:∵n≥2时,=﹣1
--1=
-1=2·-1
(n≥2)
∴数列{|是以=1为首项,以2为公差的等差数列
(2)解:由(1)知=1+(n﹣1)×2=2n﹣1,
=
∴n≥2时,=﹣1=﹣
∵a1=S1=1,
=
(3)设F(n)=
=
∴F(n)在n∈N*上递增,要使F(n)≥k恒成立,
只需[F(n)]min≥k
∵[F(n)]min=F(1)=
∴0<k≤,kmax=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N).对自然数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知数列{an}的通项公式an=n2+n(n∈N),,试判断{△an},{△2an}是否为等差或等比数列,为什么?
(2)若数列{an}首项a1=1,且满足△2an-△an+1+an=-2n(n∈N),求数列{an}的通项公式.
(3)(理)对(2)中数列{an},是否存在等差数列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an对一切自然n∈N都成立?若存在,求数列{bn}的通项公式;若不存在,则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{an},定义{△an}为数列{an}的一阶差分数列,其中an=an+1-an,n∈N*;对k≥2,k∈N*,定义{△kan}为{an}的k阶差分数列,其中kan=k-1an+1-k-1an
(1)若数列{an}的通项公式为an=n2-6n,分别求出其一阶差分数列{△an}、二阶差分数列{△2an}的通项公式;
(2)若数列{an}首项a1=1,且满足2an-△an+1+an=-2n,求出数列{an}的通项公式an及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}首项a1=1,前n项和Sn满足等式2tSn-(2t+1)Sn-1=2t(常数t>0,n=2,3,4…)
(1)求证:{an}为等比数列;
(2)设数列{an}的公比为f(t),作数列{bn}使b1=1,bn=f(
1bn-1+2
)-2
(n=2,3,4…),求数列{bn}的通项公式.
(3)设cn=nbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}首项a1=1,前n项和Sn与an之间满足an=
2
S
2
n
2Sn-1
(n≥2)

(1)求证:数列{
1
Sn
}
是等差数列;
(2)求数列{an}的通项公式;
(3)设存在正数k,使(1+S1)(1+S2)…(1+Sn)≥k
2n+1
对一切n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•桂林一模)对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*).规定{△2an}为{an}的二阶差分数列,其中△2an=△an+1-△an
(Ⅰ)已知数列{an}的通项公式an=n2+n(n∈N*),试判断{△an},{△2an}是否为等差或等比数列,并说明理由;
(Ⅱ)若数列{an}首项a1=1,且满足2an-△an+1+an=-2n(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案