分析 (1)△=36a2≥0,当a=0时,不等式f(x)≤0化为x2≤0,即可得出解集;当a≠0时,△>0,不等式化为(x-2a)(x-8a)≤0,对a分类讨论即可得出.
(2)由于a>0,且当x∈(0,+∞)时,不等式$\frac{f(x)}{x}$>-2恒成立,可得$(\frac{f(x)}{x})_{min}$>-2.$\frac{f(x)}{x}$=x+$\frac{16{a}^{2}}{x}$-10a,利用基本不等式的性质即可得出最小值.
解答 解:(1)△=100a2-64a2=36a2≥0,
当a=0时,不等式f(x)≤0化为x2≤0,其解集为{0};
当a≠0时,△>0,不等式化为(x-2a)(x-8a)≤0,
当a>0时,不等式的解集为{x|2a<x<8a};
当a<0时,不等式的解集为{x|8a<x<2a}.
综上可得:当a=0时,不等式的解集为{0};
当a>0时,不等式的解集为{x|2a<x<8a};
当a<0时,不等式的解集为{x|8a<x<2a}.
(2)∵a>0,且当x∈(0,+∞)时,不等式$\frac{f(x)}{x}$>-2恒成立,
∴$(\frac{f(x)}{x})_{min}$>-2.
∵a>0,且当x∈(0,+∞)时,$\frac{f(x)}{x}$=x+$\frac{16{a}^{2}}{x}$-10a≥2$\sqrt{x×\frac{16{a}^{2}}{x}}$-10a=-2a,当且仅当x=4a时取等号.
∴-2a>-2,又a>0,
解得0<a<1.
∴a的取值范围是(0,1).
点评 本题考查了一元二次不等式的解集与判别式的关系、基本不等式的性质,考查了变形能力、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k•b<0 | B. | k•b≤0 | C. | k•b>0 | D. | k•b≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com