精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x2和g(x)=lnx,作一条平行于y轴的直线,交f(x),g(x)图象于A,B两点,则|AB|的最小值为$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$.

分析 将两个函数作差,得到函数y=f(x)-g(x),再求此函数的最小值即可得到|AB|最小值.

解答 解:设函数y=f(x)-g(x)=x2-lnx,求导数得
y′=2x-$\frac{1}{x}$=$\frac{2{x}^{2}-1}{x}$,
当0<x<$\frac{\sqrt{2}}{2}$时,y′<0,函数在(0,$\frac{\sqrt{2}}{2}$)上为单调减函数,
当x>$\frac{\sqrt{2}}{2}$时,y′>0,函数在($\frac{\sqrt{2}}{2}$,+∞)上为单调增函数,
所以当x=$\frac{\sqrt{2}}{2}$时,所设函数的最小值为$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$,
所以|AB|最小值为$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{1}{2}$-ln$\frac{\sqrt{2}}{2}$.

点评 本题主要考查函数最值的求法,利用导数研究函数的极值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列命题中正确命题的个数是(  )
(1)设f(x)=ax3+bx2+cx+d(a≠0),若f(x)存在极值,则一定既有极大值又有极小值;
(2)命题“若m=3,则椭圆$\frac{x^2}{4}+\frac{y^2}{m}$=1离心率为$\frac{1}{2}$”的逆命题;
(3)设z∈C,命题“若z为实数,则z=$\overline{z}$”的否命题;
(4)设a,b∈R,命题“若ab=0,则复数z=a+bi为纯虚数”的逆否命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题p:?x>0,x-lnx>0,则¬p是(  )
A.?x≤0,x-lnx≤0B.?x>0,x-lnx≤0C.?x≤0,x-lnx≤0D.?x>0,x-ln≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$0<x<\frac{π}{2}$,$sin({x-\frac{π}{6}})=\frac{1}{3}$,则$cos({x-\frac{π}{6}})$=$\frac{2\sqrt{2}}{3}$,cosx=$\frac{2\sqrt{6}-1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a=log20.5,b=20.5,c=0.52,则a、b、c的大小关系是(  )
A.a<c<bB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若全集U={0,1,2,3,4,5,6},A={1,3},B={3,5},则∁U(A∪B)=(  )
A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.i是虚数单位,i+i2+i3+…+i2017=(  )
A.1B.iC.i2D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对应的边分别为a,b,c,且a2-(b-c)2=bc,cosAcosB=$\frac{sinA+cosC}{2}$.
(1)求角A和角B的大小;
(2)若f(x)=sin(2x+C),将函数y=f(x)的图象向右平移$\frac{π}{12}$个单位后又向上平移了2个单位,得到函数y=g(x)的图象,求函数g(x)的解析式及单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.变量x、y具有线性相关关系,当x的取值为8,12,14,16时,通过观测知y的值分别为5,8,9,11,若在实际问题中,y的预报值最大是10,则x的最大取值不能超过(  )
A.16B.15C.17D.12

查看答案和解析>>

同步练习册答案