精英家教网 > 高中数学 > 题目详情
已知曲线y=
1
3
x3+
4
3
的切线l过点A(2,4),则切线l的斜率为______.
设切点坐标为(x0,y0),则y′=x2
∴切线l的方程为y-y0=x02(x-x0
∵y0=
1
3
x03+
4
3
,切线l过点A(2,4),
∴4-(
1
3
x03+
4
3
)=x02(2-x0
2
3
x03-2
x02+
8
3
=0
x03-3x02+4=0
x03+1-3(x02-1)=0
∴(x0+1)(x02-4x0+4)=0
∴x0=-1或x0=2
∴切线l的斜率为4或1
故答案为:4或1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3+
4
3
,则曲线在点P(2,4)处的切线方程为(  )
A、4x+y-12=0
B、4x-y-4=0
C、2x+y-8=0
D、2x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线 y=
1
3
x3+2x-
2
3

(1)求曲线在点P(2,6)处的切线方程;
(2)求曲线过点P(2,6)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3+2与曲线y=4x2-1在x=x0处的切线互相垂直,则x0的值为
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3-
1
2
x2+
1
3
在x=-1
处的切线方程为
4x-2y+3=0
4x-2y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3在x=x0处的切线L经过点P(2,
8
3
),求切线L的方程.

查看答案和解析>>

同步练习册答案