精英家教网 > 高中数学 > 题目详情
过抛物线x2=4y的焦点F作与y轴垂直的直线与抛物线相交于点P,则抛物线在点P处的切线l的方程为   
【答案】分析:求出点P的坐标,求出抛物线在点P的导数,即得该点切线的斜率,用点斜式求得在点P的切线的方程.
解答:解:抛物线x2=4y的焦点F(1,0),与y轴垂直的直线为 y=1,故点P的坐标为(-2,1),或(2,1),
当点P的坐标为(-2,1)时,切线的斜率为 f′(-2)=-1,切线方程为 y-1=-1(x+2),即x+y+1=0.
当点P的坐标为(2,1)时,切线的斜率为 f′(2)=1,切线方程为 y-1=1(x-2),即x-y-1=0.
故答案为x-y-1=0或x+y+1=0.
点评:本题考查导数与切线斜率的关系,用点斜式求直线的方程,求出切线斜率是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线x2=4y的焦点F作倾斜角为30°的直线,与抛物线分别交于A、B两点(A在y轴左侧),则
|AF||FB|
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线x2=4y的焦点F作直线交抛物线于P1(x1、y1),P2(x2、y2)两点,若y1+y2=6,则|P1P2|的值为(  )
A、5B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线x2=4y的焦点F作直线交抛物线于P1(x1,y1)P2(x2,y2)两点,若y1+y2=6,求|P1P2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A(x1,y1),B(x2,y2)两点.
(I)若
AP
PB
(λ∈R)
,证明:λ=-
x1
x2

(II)在(I)条件下,若点Q是点P关于原点对称点,证明:
QP
⊥(
QA
QB
)

(III)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过抛物线x2=4y的焦点,斜率为k(k>0)的直线l交抛物线于A(x1,y2),B(x2,y2)(x1<x2)两点,且|AB|=8.
(1)求直线l的方程;
(2)若点C(x3,y3)是抛物线弧AB上的一点,求△ABC面积的最大值,并求出点C的坐标.

查看答案和解析>>

同步练习册答案