精英家教网 > 高中数学 > 题目详情
13.如图所示,从椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点M向x轴作垂线,垂足为焦点F1,若椭圆长轴一个端点为A,短轴一个端点为B,且OM∥AB.
(1)求椭圆离心率e;
(2)若F2为椭圆的右焦点,直线PQ过F2交椭圆于P,Q两点,且PQ⊥AB,当S${\;}_{D{F}_{1}PQ}$=20$\sqrt{3}$时,求椭圆方程.

分析 (1)设出M的坐标,由题意得到A,B的坐标,由OM∥AB,借助于斜率相等可得b=c,再结合隐含条件可求椭圆离心率;
(2)由PQ⊥AB求出求出PQ所在直线的斜率,写出PQ的方程,和椭圆方程联立化为关于y的一元二次方程,求出|yQ-yP|$\frac{4\sqrt{3}}{5}$b,代入三角形的面积公式求得b值得答案.

解答 解:(1)设M(-c,y),A(a,0),B(0,b),
则有$\frac{{c}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$.解得$y=\frac{{b}^{2}}{a}$.
∵AB∥OM,∴kAB=kOM
∴-$\frac{b}{a}$=$\frac{\frac{{b}^{2}}{a}}{-c}$,得b=c,则a=$\sqrt{2}$b=$\sqrt{2}$c,
∴e=$\frac{\sqrt{2}}{2}$;
(2)∵kAB=-$\frac{1}{{k}_{PQ}}$,kAB=-$\frac{\sqrt{2}}{2}$,∴kPQ=$\sqrt{2}$.
设lPQ:y=$\sqrt{2}$(x-c)=$\sqrt{2}$(x-b),则x=$\frac{y}{\sqrt{2}}$+b,①
椭圆方程$\frac{{x}^{2}}{2{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,即x2+2y2=2b2,②
把①代入②得:$\frac{5}{2}$y2+$\sqrt{2}$by-b2=0,
△=2b2+10b2=12b2
∴|yQ-yP|=$\frac{\sqrt{12{b}^{2}}}{\frac{5}{2}}$=$\frac{4\sqrt{3}}{5}$b.
又${S}_{△{F}_{1}PQ}$=$\frac{1}{2}$|yQ-yP|•|F1F2|=$\frac{1}{2}$•$\frac{4\sqrt{3}}{5}$b•2b=$\frac{4\sqrt{3}}{5}$b2=20$\sqrt{3}$,
∴b2=25,则a2=50.
∴椭圆方程为$\frac{{x}^{2}}{50}+\frac{{y}^{2}}{25}=1$.

点评 本题考查直线与圆锥曲线的位置关系,考查椭圆的简单性质,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin4x+2$\sqrt{3}$sinxcosx-cos4x
(1)求函数的最小正周期.
(2)求出该函数在[0,π]上的单调递增区间.
(3)关于x的方程f(x)=k(0<k<2,0≤x≤π)有两个解x1,x2时,求x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是函数f(x)=Acos($\frac{2}{3}$πx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的图象的一部分,则f(2015)=(  )
A.1B.2C.$\frac{{\sqrt{3}}}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设集合A{x|x∈N},且1≤x≤26,B={a,b,c,…,z},对应关系f:A→B如表(即1到26按由小到大顺序排列的自然数与按照字母表顺序排列的26个英文小写字母之间的一一对应):
x123452526
f(x)abcdeyz
又知函数g(x)=$\left\{\begin{array}{l}{lo{g}_{2}(32-x)(22<x<32)}\\{x+4(0≤x≤22)}\end{array}\right.$,若f[g(x1)],f[g(20)],f[g(x2)],f[g(9)]所表示的字母依次排列恰好组成的英文单词为“exam”,则x1+x2=31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={-2,-1,0,1},N={x|$\frac{1}{2}$≤2x≤4},x∈Z},则M∩N=(  )
A.M={-2,-1,0,1,2}B.M={-1,0,1,2}C.M={-1,0,1}D.M={0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.当x=1时,函数f(x)=x3-x2-x-1取得极小值,极小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C的对边分别为a,b,c,向量$\overrightarrow m=(cos(A-B),sin(A-B))$,$\overrightarrow n=(cosB,-sinB)$,且$\overrightarrow m•\overrightarrow n=-\frac{3}{5}$.
(Ⅰ)求sinA的值;
(Ⅱ)若$a=4\sqrt{2},b=5$,求$\overrightarrow{AB}•\overrightarrow{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=log${\;}_{\frac{1}{2}}$(2x-x2)的单调递减区间为(  )
A.(0,2)B.(-∞,1]C.[1,2)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}满足anan+1-an+1=-1,a2016=-1,则a361等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步练习册答案