精英家教网 > 高中数学 > 题目详情

已知{an}为等差数列,且a2=-1,a5=8.
(I)求数列{|an|}的前n项和;
(II)求数列{2n•an}的前n项和.

解:(I)设等差数列{an}的公差为d,
因为a2=-1,a5=8,所以
解得a1=-4,d=3,…(2分)
所以an=-4+3(n-1)=3n-7,…(3分)
因此…(4分)
记数列{|an|}的前n项和为Sn
当n=1时,S1=|a1|=4,
当n=2时,S2=|a1|+|a2|=5,
当n≥3时,Sn=S2+|a3|+|a4|+…+|an|=5+(3×3-7)+(3×4-7)+…+(3n-7)
=
又当n=2时满足此式,
综上,…(8分)
(II)记数列{2nan}的前n项和为Tn,由(I)可知,a1=-4,d=3,an=3n-7,
,①
,②
①-②可得
=-8+3×-2n+1(3n-7)
=-8+3(2n+1-4)-2n+1(3n-7)
=-20-(3n-10)2n+1
故Tn=20+(3n-10)2n+1…(13分)
分析:(I)设等差数列{an}的公差为d,由a2=-1,a5=8,利用等差数列的通项公式能求出an,由此能求出数列{|an|}的前n项和;(II)记数列{2nan}的前n项和为Tn.则,由错位相减法可求和.
点评:本题考查数列的求和中的错位相减法求和,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题:“在等差数(an)中,若4a2+a10+a(  )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数an的前n项和为SnS10=
3
0
(1+3x)dx
,则a5+a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数到{an}中,a1=120,公差d=-4,Sn为其前n项和,若Sn≤an(n≥2).则n的最小值为(    )

A.60                  B.62              C.70               D.72

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知命题:“在等差数(an)中,若4a2+a10+a(  )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为______.

查看答案和解析>>

科目:高中数学 来源:2009年江苏省苏州市高三教学调研数学试卷(解析版) 题型:解答题

已知命题:“在等差数(an)中,若4a2+a10+a( )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为   

查看答案和解析>>

同步练习册答案