精英家教网 > 高中数学 > 题目详情
四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1).
纪念币 A B C D
概率
1
2
1
2
a a
这四个纪念币同时投掷一次,设ξ表示出现正面向上的个数.
(1)求ξ的分布列及数学期望;
(2)在概率P (ξ=i ) (i=0,1,2,3,4)中,若P (ξ=2 )的值最大,求a的取值范围.
分析:(1)其中ξ的可能取值为0,1,2,3,4,然后根据n次独立重复试验中恰好发生k次的概率公式求出相应的概率,列出分布列,最后利用数学期望公式解之即可;
(2)根据0<a<1可知P (ξ=0)<P (ξ=1),P (ξ=4)<P (ξ=3)只需P (ξ=2)-P (ξ=1)≥0且P (ξ=2)-P (ξ=3)≥0,解之即可求出a的取值范围.
解答:解:(1)P (ξ)是ξ个正面向上的概率,其中ξ的可能取值为0,1,2,3,4.
∴P (ξ=0)=C20(1-
1
2
2C20(1-a)2=
1
4
(1-a)2
P (ξ=1)=C21
1
2
(1-
1
2
)C20(1-a)2+C20(1-
1
2
2C21a(1-a)=
1
2
(1-a)
P (ξ=2)=C22•(
1
2
2C20(1-a)2+C21
1
2
(1-
1
2
)C21a(1-a)+C20(1-
1
2
2C22a2=
1
4
(1+2a-2a2),
P (ξ=3)=C22•(
1
2
2C21a(1-a)+C21
1
2
(1-
1
2
)C22a2=
a
2

P (ξ=4)=C22
1
2
2C22a2=
1
4
a2
∴ξ的分布列为:
ξ 0 1 2 3 4
P
1
4
(1-a)2
1
2
(1-a)
1
4
(1+2a-2a2
a
2
1
4
a2
∴ξ的数学期望为:Eξ=0×
1
4
(1-a)2+1×
1
2
(1-a)+2×
1
4
(1+2a-2a2)+3×
a
2
+4×
1
4
a2=2a+1.(7分)
(2)∵0<a<1,∴P (ξ=0)<P (ξ=1),P (ξ=4)<P (ξ=3)
则P (ξ=2)-P (ξ=1)=
1
4
(1+2a-2a2)-
1
2
(1-a)=-
1
4
(2a2-4a+1)≥0
P (ξ=2)-P (ξ=3)=
1
4
(1+2a-2a2)-
a
2
=-
1
4
(2a2-1)≥0
2a2-4a+1≤0
2a2-1≤0
,得
2-
2
2
≤a≤
2
2

即a的取值范围是[
2-
2
2
2
2
].(12分)
点评:本题主要考查了n次独立重复试验中恰好发生k次的概率,以及离散型随机变量的概率分布与数学期望,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1).
精英家教网
将这四个纪念币同时投掷一次,设ξ表示正面向上的纪念币的个数.
(Ⅰ)求ξ的取值及相应的概率;
(Ⅱ)求在概率p(ξ)中,p(ξ=2)为最大时,实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)

四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1)

纪念币

A

B

C

D

概率

1/2

1/2

a

a

这四个纪念币同时投掷一次,设ξ表示出正面向上的个数。

(1)求概率p(ξ)

(2)求在概率p(ξ),p(ξ=2)为最大时,a的取值范围。

(3)求ξ的数学期望。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省实验中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1).
纪念币ABCD
概率aa
这四个纪念币同时投掷一次,设ξ表示出现正面向上的个数.
(1)求ξ的分布列及数学期望;
(2)在概率P (ξ=i ) (i=0,1,2,3,4)中,若P (ξ=2 )的值最大,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市石室中学高考数学三模试卷(文科)(解析版) 题型:解答题

四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示(0<a<1).

将这四个纪念币同时投掷一次,设ξ表示正面向上的纪念币的个数.
(Ⅰ)求ξ的取值及相应的概率;
(Ⅱ)求在概率p(ξ)中,p(ξ=2)为最大时,实数a的取值范围.

查看答案和解析>>

同步练习册答案