精英家教网 > 高中数学 > 题目详情
5.与圆(x+2)2+y2=1及圆(x-2)2+y2=4都外切的圆的圆心的轨迹方程为$\frac{{x}^{2}}{\frac{1}{4}}-\frac{{y}^{2}}{\frac{15}{4}}$=1(x<0).

分析 设所求圆的圆心坐标P(x,y),半径为r,两圆的圆心分别是C1,C2,根据题意可知两圆心的坐标,根据所求圆与两个圆都外切进而可得PC1|和|PC2|的表达式,整理可得|PC2|-|PC1|=1,根据双曲线定义可知P点的轨迹为C1,C2为焦点的双曲线进而根据双曲线的性质可求得双曲线的方程.

解答 解:设所求圆的圆心坐标P(x,y),半径为r,两圆的圆心分别是C1,C2
∵所求圆与两个圆都外切,
∴|PC1|=r+1,|PC2|=r+2,
即|PC2|-|PC1|=1,
根据双曲线定义可知P点的轨迹为以C1,C2为焦点的双曲线,2c=4,c=2;2a=1,a=$\frac{1}{2}$,b=$\frac{\sqrt{15}}{2}$
∴P点的轨迹方程为$\frac{{x}^{2}}{\frac{1}{4}}-\frac{{y}^{2}}{\frac{15}{4}}$=1(x<0).
故答案为:$\frac{{x}^{2}}{\frac{1}{4}}-\frac{{y}^{2}}{\frac{15}{4}}$=1(x<0).

点评 本题主要考查点的轨迹方程及双曲线的性质.常用方法是直接法,定义法,代入转移法等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=ax-xlna+alnx-1(a>0,且a≠1),给出下列结论:
①函数f(x)为定义域上的增函数;
②当0<a<1时,函数f(x)在区间(a,1)上有且只有一个零点;
③对任意x∈[1,e],都有f(x)≥$\frac{1}{e}$恒成立的充要条件为a∈[$\frac{1}{e}$,1);
④设g(x)=f(x)-ax,存在唯一实数a,使得对任意x>0,都有g(x)+1≤0.
其中正确结论的序号为①②④.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知α,β∈(0,$\frac{π}{4}$),$\frac{tan\frac{α}{2}}{1-ta{n}^{2}\frac{α}{2}}$=$\frac{1}{4}$,且3sin β=sin(2α+β),则α+β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列结论中,正确结论的序号为①②④
①已知M,N均为正数,则“M>N”是“log2M>log2N”的充要条件;
②如果命题“p或q”是真命题,“非p”是真命题,则q一定是真命题;
③若p为:?x>0,x2+2x-2≤0,则¬p为:?x≤0,x2+2x-2>0;
④命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若z∈C,且i•z=1-i,则复数z=-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.ρ=4sinθ所对应的直角坐标方程为x2+y2=4y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法
①角α是第一象限的角,则角2α是第一或第二象限的角;
②变量“正方体的棱长”和变量“正方体的体积”属于相关关系;
③掷一粒均匀的骰子,出现“向上的点数为偶数”的概率为$\frac{1}{2}$;
④向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则存在实数λ,使得$\overrightarrow{a}$=λ$\overrightarrow{b}$,
其中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|0≤x<4},B={x∈N|1≤x≤3},则A∩B=(  )
A.{x|1≤x≤3}B.{x|0≤x<4}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10项的规律,这个数列的第2016项
a2016=(  )
A.$\frac{1}{63}$B.$\frac{1}{31}$C.$\frac{3}{61}$D.$\frac{1}{15}$

查看答案和解析>>

同步练习册答案