精英家教网 > 高中数学 > 题目详情
如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O且PO=1,
(Ⅰ)证明PA⊥BF;
(Ⅱ)求面APB与面DPB所成二面角的大小.

【答案】分析:(1)立体几何中证明直线与直线垂直,通常可用三垂线定理:因为P在平面ABC内的射影为O,所以PO⊥平面ABF,所以AO为PA在平面ABF内的射影;又因为O为BF中点,所以AO⊥BF,则PA⊥BF.
(2)解法一:
二面角的度量关键在于作出它的平面角,常用的方法就是三垂线定理.由PO⊥平面ABF可得:AD⊥平面PBF,过O在平面POB内作OH⊥PB于H,连AH、DH,则AH⊥PB,DH⊥PB,所以∠AHD为所求二面角平面角.
解法二:
以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.
设平面PAB的法向量为,则,设平面PDB的法向量为,则,所以所求二面角的大小即为这两个法向量的夹角的大小.
解答:解:(Ⅰ)在正六边形ABCDEF中,△ABF为等腰三角形,
∵P在平面ABC内的射影为O,
∴PO⊥平面ABF,
∴AO为PA在平面ABF内的射影;
∵O为BF中点,∴AO⊥BF,
∴PA⊥BF.
(Ⅱ)解法一:
∵PO⊥平面ABF,
∴平面PBF⊥平面ABC;而O为BF中点,ABCDEF是正六边形,
∴A、O、D共线,且直线AD⊥BF,则AD⊥平面PBF;
又∵正六边形ABCDEF的边长为1,

过O在平面POB内作OH⊥PB于H,连AH、DH,则AH⊥PB,DH⊥PB,
所以∠AHD为所求二面角平面角.
在△AHO中,OH==
在△DHO中,
=
(Ⅱ)解法二:
以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),

设平面PAB的法向量为,则

设平面PDB的法向量为,则

=
点评:本小题主要考查棱锥的结构特征,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O且PO=1,
(Ⅰ)证明PA⊥BF;
(Ⅱ)求面APB与面DPB所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年安徽卷)(12分)

如图,P是边长为1的正六边形ABCDEF所在平面外一点,,P在平面ABC内的射影为BF的中点O。

(Ⅰ)证明

(Ⅱ)求面与面所成二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是边长为1的正六边形ABCDEF所在平面外一点,PA=1,P在平面ABC内的射影为BF的中点O.

(1)证明PABF

(2)求面APB与面DPB所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源:2006年普通高等学校招生全国统一考试安徽卷数学理科 题型:解答题

(本大题满分12分)如图,P是边长为1的正六边形ABCDEF所在平面外一点,,P在平面ABC内的射影为BF的中点O。

(Ⅰ)证明

(Ⅱ)求面与面所成二面角的大小。

 

查看答案和解析>>

同步练习册答案