精英家教网 > 高中数学 > 题目详情
设△ABC的内角A,B,C所对的边长分别为a,b,c且acosB-bcosA=
3
5
c,则
tanA
tanB
的值为
 
分析:先根据正弦定理得到sinAcosB-sinBcosA=
3
5
sinC,再由两角和与差的正弦公式进行化简可得到sinAcosB=4sinBcosA,然后转化为正切的形式可得到答案.
解答:解:由acosB-bcosA=
3
5
c及正弦定理可得
sinAcosB-sinBcosA=
3
5
sinC,即sinAcosB-sinBcosA=
3
5
sin(A+B),
即5(sinAcosB-sinBcosA)=3(sinAcosB+sinBcosA),
即sinAcosB=4sinBcosA,因此tanA=4tanB,
所以
tanA
tanB
=4.
故答案为:4
点评:本题主要考查正弦定理的应用和切化弦的基本应用.三角函数的公式比较多,要注意公式的记忆和熟练应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)与
n
=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C的对边分别为a、b、c.若b=
3
,c=1,B=60°
,则角C=
 
°.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c
(1)求证:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,试求
tanA
tanB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函数f(x)的最大值和最小值,并写出相应的x的值;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,满足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周长;
(2)若直线l:
x
a
+
y
b
=1
恒过点D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步练习册答案