精英家教网 > 高中数学 > 题目详情
动点P(a,b)在区域
x+y-2≤0
x-y≥0
y≥0
,x+y-2≤0上运动,则w=
a+b-3
a-1
的范围(  )
分析:确定不等式表示的区域,w=
a+b-3
a-1
=1+
b-2
a-1
,其中
b-2
a-1
表示区域内的点(a,b)与(1,2)连线的斜率,由此可得结论.
解答:解:不等式表示的区域如图所示

w=
a+b-3
a-1
=1+
b-2
a-1
,其中
b-2
a-1
表示区域内的点(a,b)与(1,2)连线的斜率
当点取(0,0)时,斜率为2,当点取(2,0)时,斜率为-2
w=
a+b-3
a-1
的范围是(-∞,-1]∪[3,+∞)
故选B.
点评:本题考查线性规划知识,考查数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•顺义区二模)已知椭圆G:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
2
2
,点F(1,0)为椭圆的右焦点.
(Ⅰ)求椭圆G的方程;
(Ⅱ)过右焦点F作斜率为k的直线l与椭圆G交于M、N两点,若在x轴上存在着动点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,试求出m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•顺义区一模)已知动圆过点M(2,0),且被y轴截得的线段长为4,记动圆圆心的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点M的直线交曲线C于A,B两点,若在x轴上存在定点P(a,0),使PM平分∠APB,求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•花都区模拟)在平面直角坐标系中,O为坐标原点,已知两点M(1,-3),N(5,1),若动点C满足
NC
=t
NM
且点C的轨迹与抛物线y2=4x交于A,B两点.
(1)求证:
OA
OB

(2)在x轴上是否存在一点P(m,0)(m≠0),使得过点P的直线l交抛物线y2=4x于D,E两点,并以线段DE为直径的圆都过原点.若存在,请求出m的值及圆心M的轨迹方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)给出下列3个命题:
①在平面内,若动点M到F1(-1,0)、F2(1,0)两点的距离之和等于2,则动点M的轨迹是以F1,F2为焦点的椭圆;
②在平面内,已知F1(-5,0),F2(5,0),若动点M满足条件:|MF1|-|MF2|=8,则动点M的轨迹方程是
x2
16
-
y2
9
=1

③在平面内,若动点M到点P(1,0)和到直线x-y-2=0的距离相等,则动点M的轨迹是抛物线.
上述三个命题中,正确的有(  )

查看答案和解析>>

同步练习册答案