4 | 7 | ( ) | ( ) | ( ) | … | a1j | … |
7 | 12 | ( ) | ( ) | ( ) | … | a2j | … |
( ) | ( ) | ( ) | ( ) | ( ) | … | a3j | … |
( ) | ( ) | ( ) | ( ) | ( ) | … | a4j | … |
… | … | … | … | … | … | … | … |
ai1 | ai2 | ai3 | ai4 | ai5 | … | aij | … |
… | … | … | … | … | … | … | … |
其中每行、每列都是等差数列,aij表示位于第i行第j列的数.
(Ⅰ)写出a45的值;
(Ⅱ)写出aij的计算公式以及2008这个数在等差数阵中所在的一个位置.
20.本小题主要考查等差数列等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.
解:(Ⅰ)a45=49.
(Ⅱ)该等差数阵的第一行是首项为4,公差为3的等差数列:
a1j=4+3(j-1);
第二行是首项为7,公差为5的等差数列:
a2j=7+5(j-1);
……
第i行是首项为4+3(i-1),公差为2i+1的等差数列,因此,
aij=4+3(i-1)+(2i+1)(j-1)
=2ij+i+j.
要找2008在该等差数阵中的位置,也就是要找正整数i、j,使得
2ij+i+j=2008,
所以j=.
当i=1时,得j=669.
所以2008在等差数阵中的一个位置是第1行第669列.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
下表给出一个“等差数阵”:
4 | 7 | ( ) | ( ) | ( ) | …… | …… | |
7 | 12 | ( ) | ( ) | ( ) | …… | …… | |
( ) | ( ) | ( ) | ( ) | ( ) | …… | …… | |
( ) | ( ) | ( ) | ( ) | ( ) | …… | …… | |
…… | …… | …… | …… | …… | …… | …… | …… |
…… | …… | ||||||
…… | …… | …… | …… | …… | …… | …… | …… |
其中每行、每列都是等差数列,表示位于第i行第j列的数。
(I)写出的值;(II)写出的计算公式;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
4 | 7 | ( ) | ( ) | ( ) | … | a1j | … |
7 | 12 | ( ) | ( ) | ( ) | … | a2j | … |
( ) | ( ) | ( ) | ( ) | ( ) | … | a3j | … |
( ) | ( ) | ( ) | ( ) | ( ) | … | a4j | … |
… | … | … | … | … | … | … | … |
ai1 | ai2 | ai3 | ai4 | ai5 | … | aij | … |
… | … | … | … | … | … | … | … |
其中每行、每列都是等差数列,aij表示位于第 i 行第 j 列的数.
(Ⅰ)写出a45的值;
(Ⅱ)写出aij的计算公式;
(Ⅲ)证明:正整数N在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com