科目:高中数学 来源: 题型:
(1)证明λ≤1,并且不存在b0≠a0,使得f(b0)=0;
(2)证明(b-a0)2≤(1-λ2)(a-a0)2.
查看答案和解析>>
科目:高中数学 来源:2014届四川省高二“零诊”考试文科数学试卷(解析版) 题型:解答题
已知函数
(其中a,b为实常数)。
(Ⅰ)讨论函数
的单调区间:
(Ⅱ)当
时,函数
有三个不同的零点,证明:
:
(Ⅲ)若
在区间
上是减函数,设关于x的方程
的两个非零实数根为
,
。试问是否存在实数m,使得
对任意满足条件的a及t
恒成立?若存在,求m的取值范围;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期期中考试数学文卷 题型:解答题
(本小题满分15分)
已知函数
,
.
(Ⅰ)若函数
的图象在
处的切线与直线
平行,求实数
的值;
(Ⅱ)设函数
,对任意的
,都有
成立,求实数
的取值范围;
(Ⅲ)当
时,请问:是否存在整数
的值,使方程
有且只有一个实根?若存在,求出整数
的值;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010年重庆市高三考前第一次模拟考试数学(理) 题型:解答题
(本小题满分12分)
已知函数
,其中,
为实常数且![]()
(Ⅰ)求
的单调增区间;
(Ⅱ)若
对任意
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年重庆市南开中学高三考前第一次模拟考试数学(理) 题型:解答题
(本小题满分12分)
已知函数
,其中,
为实常数且![]()
(Ⅰ)求
的单调增区间;www.www.zxxk.com[来源:学,科,网]
(Ⅱ)若
对任意
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com