精英家教网 > 高中数学 > 题目详情
定义非零向量
OM
=(a,b)
的“相伴函数”为f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)
称为函数f(x)=asinx+bcosx的“相伴向量”(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设h(x)=cos(x+
π
6
)-2cos(x+a)(a∈R),求证:h(x)∈S;
(2)求(1)中函数h(x)的“相伴向量”模的取值范围;
(3)已知点M(a,b)(b≠0)满足:(a-
3
)2+(b-1)2=1
上一点,向量
OM
的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值范围.
分析:(1)依题意,将h(x)=cos(x+
π
6
)-2cos(x+a)可化为h(x)=(2sina-
1
2
)sinx+(
3
2
-2cosa)cosx,于是结论可证;
(2)利用向量模的概念可求得)|
OM
|=
5-4sin(a+
π
3
)
,利用正弦函数的性质可求得|
OM
|的取值范围;
(3)由f(x)=
a2+b2
sin(x+φ)可求得x0=2kπ+
π
2
-φ,k∈Z时f(x)取得最大值,其中tanx0=
a
b
b
a
为直线OM率,由几何意义知
b
a
∈(0,
3
],再利用二倍角的正切可求得tan2x0的范围.
解答:解:(1)∵h(x)=cos(x+
π
6
)-2cos(x+a)=(2sina-
1
2
)sinx+(
3
2
-2cosa)cosx
∴函数h(x)的相伴向量
OM
=(2sina-
1
2
3
2
-2cosa),
∴h(x)∈S…(4分)
(2)∵|
OM
|=
(2sina-
1
2
)2+(
3
2
-2cosa)2

=
5-2sina-2
3
cosa

=
5-4sin(a+
π
3
)

∴|
OM
|max=
5+4
=3
,|
OM
|min=
5-4
=1

∴|
OM
|的取值范围为[1,3]…(10分)
(3)
OM
的相伴函数f(x)=asinx+bcosx=
a2+b2
sin(x+φ),
其中cosφ=
a
a2+b2
,sinφ=
b
a2+b2

当x+φ=2kπ+
π
2
,k∈Z即x0=2kπ+
π
2
-φ,k∈Z时f(x)取得最大值,
∴tanx0=tan(2kπ+
π
2
-φ)=cotφ=
a
b

∴tan2x0=
2tanx0
1-tan2x0
=
a
b
1-(
a
b
)2
=
2
b
a
-
a
b

b
a
为直线OM率,由几何意义知
b
a
∈(0,
3
]
令m=
b
a
,tan2x0=
2
m-
1
m
,m∈(0,
3
]
∵m∈(0,
3
],故
1
m
3
3
,-
1
m
≤-
3
3

∴m-
1
m
∈(-∞,
2
3
3
],
∴tan2x0∈(-∞,0)∪[
3
,+∞)
…(18分)
点评:本题考查两角和与差的正弦函数,考查二倍角的正切与向量的模,考查综合分析与解不等式的能力,难度大,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

定义非零向量
OM
=(a,b)
的“相伴函数”为f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)
称为函数f(x)=asinx+bcosx的“相伴向量”(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设h(x)=cos(x+
π
6
)-2cos(x+a)(a∈R),求证:h(x)∈S;
(2)求(1)中函数h(x)的“相伴向量”模的取值范围;
(3)已知点M(a,b)(b≠0)满足:(a-
3
)2+(b-1)2=1
上一点,向量
OM
的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值范围.

查看答案和解析>>

同步练习册答案