精英家教网 > 高中数学 > 题目详情

【题目】设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足 ≤0。
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

【答案】
(1)解:若a=1,解x2﹣4x+3<0得:1<x<3,解 得:2<x≤3;

∴命题p:实数x满足1<x<3,命题q:实数x满足2<x≤3;

∵p∧q为真,∴p真,q真,∴x应满足 ,解得2<x<3,即x的取值范围为(2,3)


(2)解:¬q为:实数x满足x≤2,或x>3;¬p为:实数x满足x2﹣4ax+3a2≥0,并解x2﹣4ax+3a2≥0得x≤a,或x≥3a;

¬p是¬q的充分不必要条件,所以a应满足:a≤2,且3a>3,解得1<a≤2;

∴a的取值范围为:(1,2]


【解析】(1)由a=1得到命题p下的不等式,并解出该不等式,解出命题q下的不等式,根据p∧q为真,得到p真q真,从而求出x的取值范围;(2)先求出¬p,¬q,根据¬p是¬q的充分不必要条件,即可求出a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣a|+|2x+1|(a>0),g(x)=x+2.
(1)当a=1时,求不等式f(x)≤g(x)的解集;
(2)若f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=
(1)求数列{bn}的通项公式;
(2)求数列{bn3n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:

等级

1

2

3

4

5

频率

0.05

m

0.15

0.35

n


(1)在抽取的20个零件中,等级为5的恰有2个,求m,n的值;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2001年至2013年北京市电影放映场次的情况如图所示.下列函数模型中,最不合适近似描述这13年间电影放映场次逐年变化规律的是(
A.y=ax2+bx+c
B.y=aex+b
C.y=aax+b
D.y=alnx+b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,若AD的中点为M,DD1的中点为N,则异面直线MN与BD所成角的大小是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是定义在(1,1)上的奇函数,且f( )=
(1)求实数m,n的值
(2)用定义证明f(x)在(1,1)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax(a>0)在[﹣1,2]上的最大值为8,函数g(x)是h(x)=ex的反函数.
(1)求函数g(f(x))的单调区间;
(2)求证:函数y=f(x)h(x)﹣ (x>0)恰有一个零点x0 , 且g(x0)<x02h(x0)﹣1 (参考数据:e=2.71828…,ln2≈0.693).

查看答案和解析>>

同步练习册答案