(本小题满分16分)
已知椭圆
的左、右顶点分别A、B,椭圆过点(0,1)且离心率
.
(1)求椭圆的标准方程;
(2)过椭圆上异于A,B两点的任意一点P作PH⊥
轴,H为垂足,延长HP到点Q,且PQ=HP,过点B作直线
轴,连结AQ并延长交直线
于点M,N为MB的中点,试判断直线QN与以AB为直径的圆O的位置关系.
![]()
(1)
.(2)直线QN与圆O相切.
【解析】(1)由b=1和离心率e,可求出a,c的值,从而可求出椭圆的标准方程.
(II) 设
,则
,设
,∵HP=PQ,∴![]()
即
,将
代入
得
,
所以Q点在以O为圆心,2为半径的圆上,即Q点在以AB为直径的圆O上.
然后求出N的坐标,再对
坐标化可得
=0,从而证得直线QN与圆O相切.
解: (1)因为椭圆经过点(0,1),所以
,又椭圆的离心率
得
,
即
,由
得
,所以
,
故所求椭圆方程为
.(6分)
(2)设
,则
,设
,∵HP=PQ,∴![]()
即
,将
代入
得
,
所以Q点在以O为圆心,2为半径的圆上,即Q点在以AB为直径的圆O上.
又A(-2,0),直线AQ的方程为
,令
,则
,
又B(2,0),N为MB的中点,∴
,
,![]()
∴![]()
![]()
,∴
,∴直线QN与圆O相切.(16分)
科目:高中数学 来源: 题型:
(2010江苏卷)18、(本小题满分16分)
在平面直角坐标系
中,如图,已知椭圆
的左、右顶点为A、B,右焦点为F。设过点T(
)的直线TA、TB与椭圆分别交于点M
、
,其中m>0,
。
(1)设动点P满足
,求点P的轨迹;
(2)设
,求点T的坐标;
(3)设
,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
查看答案和解析>>
科目:高中数学 来源:2010年泰州中学高一下学期期末测试数学 题型:解答题
(本小题满分16分)
函数
,
(
),
A=![]()
(Ⅰ)求集合A;
(Ⅱ)如果
,对任意
时,
恒成立,求实数
的范围;
(Ⅲ)如果
,当“
对任意
恒成立”与“
在
内必有解”同时成立时,求
的最大值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏大丰新丰中学高二上期中考试文数学试卷(解析版) 题型:解答题
(本小题满分16分) 本题请注意换算单位
某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;
(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?
查看答案和解析>>
科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题
(本小题满分16分)设命题
:方程
无实数根;
命题
:函数
的值域是
.如果命题
为真命题,
为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题
(本小题满分16分)
已知函数f(x)=
为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为![]()
(Ⅰ)求f(
)的值;
(Ⅱ)将函数y=f(x)的图象向右平移
个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com