如图,在三棱锥
中,
底面
,
点
,
分别在棱
上,且![]()
(Ⅰ)求证:
平面
;
(Ⅱ)当
为
的中点时,求
与平面
所成的角的大小;
(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
解法:本题主要考查直线和平面垂直、直线与平面所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.
(Ⅰ)∵PA⊥底面ABC,∴PA⊥BC.
又
,∴AC⊥BC.
∴BC⊥平面PAC.
(Ⅱ)∵D为PB的中点,DE//BC,
∴
,
又由(Ⅰ)知,BC⊥平面PAC,w.w.w.k.s.5.u.c.o.m
![]()
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴
,
∴在Rt△ABC中,
,∴
.
∴在Rt△ADE中,
,
∴
与平面
所成的角的大小
.
(Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE
平面PAC,PE
平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角
的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴
.
∴在棱PC上存在一点E,使得AE⊥PC,这时
,
故存在点E使得二面角
是直二面角.
科目:高中数学 来源: 题型:
(本小题共14分)如图,在三棱锥
中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:
平面
;(Ⅱ)当
为
的中点时,求
与平面
所成的角的大小;(Ⅲ)是否存在点
使得二面角
为直二面角?并说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届山西省高二10月月考理科数学试卷(解析版) 题型:解答题
(本小题满分10分)
如图,在三棱锥
中,
底面
,
点
,
分别在棱
上,且
(Ⅰ)求证:
平面
;
(Ⅱ)当
为
的中点时,求
与平面
所成的角的正弦值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com